Journal of Meteorological Research

, Volume 33, Issue 5, pp 851–869 | Cite as

Development of Land Surface Model BCC_AVIM2.0 and Its Preliminary Performance in LS3MIP/CMIP6

  • Weiping LiEmail author
  • Yanwu Zhang
  • Xueli Shi
  • Wenyan Zhou
  • Anning Huang
  • Mingquan Mu
  • Bo Qiu
  • Jinjun Ji
Regular Article


The improvements and validation of several parameterization schemes in the second version of the Beijing Climate Center Atmosphere-Vegetation Interaction Model (BCC_AVIM2.0) are introduced in this study. The main updates include a replacement of the water-only lake module by the common land model lake module (CoLM-lake) with a more realistic snow-ice-water-soil framework, a parameterization scheme for rice paddies added in the vegetation module, renewed parameterizations of snow cover fraction and snow surface albedo to accommodate the varied snow aging effect during different stages of a snow season, a revised parameterization to calculate the threshold temperature to initiate freeze (thaw) of soil water (ice) rather than being fixed at 0°C in BCC_AVIM1.0, a prognostic phenology scheme for vegetation growth instead of empirically prescribed dates for leaf onset/fall, and a renewed scheme to depict solar radiation transfer through the vegetation canopy. The above updates have been implemented in BCC_AVIM2.0 to serve as the land component of the BCC Climate System Model (BCC_CSM). Preliminary results of BCC_AVIM in the ongoing Land Surface, Snow, and Soil Moisture Model Intercomparison Project (LS3MIP) of the Coupled Model Intercomparison Project Phase 6 (CMIP6) show that the overall performance of BCC_AVIM2.0 is better than that of BCC_AVIM1.0 in the simulation of surface energy budgets at the seasonal timescale. Comparing the simulations of annual global land average before and after the updates in BCC_AVIM2.0 reveals that the bias of net surface radiation is reduced from −12.0 to −11.7 W m−2 and the root mean square error (RMSE) is reduced from 20.6 to 19.0 W m−2; the bias and RMSE of latent heat flux are reduced from 2.3 to −0.1 W m−2 and from 15.4 to 14.3 W m−2, respectively; the bias of sensible heat flux is increased from 2.5 to 5.1 W m−2 but the RMSE is reduced from 18.4 to 17.0 W m−2.

Key words

BCC_AVIM2.0 LS3MIP CMIP6 surface radiation sensible heat flux latent heat flux 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The authors thank Professor Shufen Sun of the Institute of Atmospheric Physics, Chinese Academy of Sciences for his constant support to the development of BCC_AVIM. We also thank the two reviewers for their valuable suggestions to improve the manuscript.


  1. Aoki, T., A. Hachikubo, and M. Hori, 2003: Effects of snow physical parameters on shortwave broadband albedos. J. Geophys. Res. Atmos., 108, 4616, doi: Scholar
  2. Arora, V. K., and G. J. Boer, 2005: A parameterization of leaf phenology for the terrestrial ecosystem component of climate models. Glob. Change Biol., 11, 39–59, doi: Scholar
  3. Arora, V. K., G. J. Boer, P. Friedlingstein, et al., 2013: Carbon-concentration and carbon-climate feedbacks in CMIP5 earth system models. J. Climate, 26, 5289–5314, doi: Scholar
  4. Avitabile, V., M. Herold, G. B. M. Heuvelink, et al., 2016: An integrated pan-tropical biomass map using multiple reference datasets. Glob. Change Biol., 22, 1406–1420, doi: Scholar
  5. Bao, Y., Y. H. Gao, S. H. Lyu, et al., 2014: Evaluation of CMIP5 earth system models in reproducing leaf area index and vegetation cover over the Tibetan Plateau. J. Meteor. Res., 28, 1041–1060, doi: Scholar
  6. Bonan, G. B., P. J. Lawrence, K. W. Oleson, et al., 2011: Improving canopy processes in the community land model version 4 (CLM4) using global flux fields empirically inferred from fluxnet data. J. Geophys. Res. Biogeosci., 116, G02014, doi: Scholar
  7. Cao, M. K., and F. I. Woodward, 1998: Net primary and ecosystem production and carbon stocks of terrestrial ecosystems and their responses to climate change. Glob. Change Biol., 4, 185–198, doi: Scholar
  8. Chen, A. J., W. P. Li, W. J. Li, et al., 2014: An observational study of snow aging and the seasonal variation of snow albedo by using data from Col de Porte, France. Chinese Sci. Bull., 59, 4881–4889, doi: Scholar
  9. Dai, Y. J., X. B. Zeng, R. E. Dickinson, et al., 2003: The Common Land Model. Bull. Amer. Meteor. Soc., 84, 1013–1024, doi: Scholar
  10. Dai, Y. J., N. Wei, A. J. Huang, et al., 2018: The lake scheme of the common land model and its performance evaluation. Chinese Sci. Bull., 63, 3002–3021, doi: (in Chinese)CrossRefGoogle Scholar
  11. Dickinson, R. E., 1983: Land surface processes and climate-surface albedos and energy balance. Adv. Geophys., 25, 305–353, doi: Scholar
  12. Dickinson, R. E., A. Henderson-Sellers, and P. J. Kennedy, 1993: Biosphere-Atmosphere Transfer Scheme (BATS) Version 1e as Coupled to the NCAR Community Climate Model. NCAR Technical Note NCAR/TN-387+STR, National Center for Atmospheric Research, Boulder, CO, USA, 72 pp.Google Scholar
  13. Foley, J. A., I. C. Prentice, N. Ramankutty, et al., 1996: An integrated biosphere model of land surface processes, terrestrial carbon balance, and vegetation dynamics. Glob. Biogeochem. Cycles, 10, 603–628, doi: Scholar
  14. Friedlingstein, P., M. Meinshausen, V. K. Arora, et al., 2014: Uncertainties in CMIP5 climate projections due to carbon cycle feedbacks. J. Climate, 27, 511–526, doi: Scholar
  15. Huang, A. N., Lazhu, J. B. Wang, et al., 2019: Evaluating and improving the performance of three 1-D lake models in a large deep lake of the central Tibetan Plateau. J. Geophys. Res. Atmos., 124, 3143–3167, doi: Scholar
  16. Ji, J. J., 1995: A climate-vegetation interaction model: Simulating physical and biological processes at the surface. J. Biogeogr., 22, 2063–2069.CrossRefGoogle Scholar
  17. Ji, J. J., M. Huang, and K. Li, 2008: Prediction of carbon exchange between China terrestrial ecosystem and atmosphere in 21st century. Sci. China Ser. D Earth Sci., 21, 885–898.CrossRefGoogle Scholar
  18. Jung, M., M. Reichstein, and A. Bondeau, 2009: Towards global empirical upscaling of FLUXNET eddy covariance observations: Validation of a model tree ensemble approach using a biosphere model. Biogeosciences, 6, 2001–2013, doi: Scholar
  19. Jung, M., M. Reichstein, H. A. Margolis, et al., 2011: Global patterns of land-atmosphere fluxes of carbon dioxide, latent heat, and sensible heat derived from eddy covariance, satellite, and meteorological observations. J. Geophys. Res. Biogeosci., 116, G00J07, doi: Scholar
  20. Kato, S., N. G. Loeb, F. G. Rose, et al., 2013: Surface irradiances consistent with CERES-derived top-of-atmosphere shortwave and longwave irradiances. J. Climate, 26, 2719–2740, doi: Scholar
  21. Lawrence, D. M., and A. G. Slater, 2008: Incorporating organic soil into a global climate model. Climate Dyn., 30, 145–160, doi: Scholar
  22. Lawrence, D. M., P. E. Thornton, K. W. Oleson, et al., 2007: The partitioning of evapotranspiration into transpiration, soil evaporation, and canopy evaporation in a GCM: Impacts on land-atmosphere interaction. J. Hydrometeor., 8, 862–880, doi: Scholar
  23. Lawrence, D. M., K. W. Oleson, M. G. Flanner, et al., 2011: Parameterization improvements and functional and structural advances in version 4 of the community land model. J. Adv. Model. Earth Syst., 3, M03001, doi: Scholar
  24. Li, Q., and S. F. Sun, 2008: Development of the universal and simplified soil model coupling heat and water transport. Sci. China Ser. D Earth Sci., 21, 88–102, doi: Scholar
  25. Li, Q., S. F. Sun, and Y. K. Xue, 2010: Analyses and development of a hierarchy of frozen soil models for cold region study. J. Geophys. Res. Atmos., 115, D03107, doi: Scholar
  26. Li, W. P., X. Liu, S. P. Nie, et al., 2009: Comparative studies of snow cover parameterization schemes used in climate models. Adv. Earth Sci., 24, 512–522, doi: (in Chinese)Google Scholar
  27. Liou, K. N., 1992: Radiation and Cloud Processes in the Atmosphere: Theory, Observation and Modeling. Oxford University Press, London, 487 pp.Google Scholar
  28. Luo, S. Q., X. W. Fang, S. H. Lyu, et al., 2017: Improving CLM4.5 simulations of land-atmosphere exchange during freeze-thaw processes on the Tibetan Plateau. J. Meteor. Res., 31, 916–930, doi: Scholar
  29. Malhi, Y., T. R. Baker, O. L. Phillips, et al., 2004: The above-ground coarse wood productivity of 104 neotropical forestplots. Glob. Change Biol., 10, 563–591, doi: Scholar
  30. Morin, S., Y. Lejeune, B. Lesaffre, et al., 2012: An 18-yr long (1993-2011) snow and meteorological dataset from a mid-altitude mountain site (Col de Porte, France, 1325 m alt.) for driving and evaluating snowpack models. Earth Syst. Sci. Data, 4, 13–21, doi: Scholar
  31. Mu, M. Q., F. Hoffman, D. Lawrence, et al., 2016: International Land Model Benchmarking (ILAMB) Package v001.00. Sponsored by the US DOE Office of Science (SC), Biological and Environmental Research (BER), doi: Available at
  32. Mu, M. Q., and ILAMB team, 2019: Design and development of a community benchmark system for land surface models. Proc. International Workshop on Weather and Climate Variability and Their Mechanism, 7–9 August, Beijing, China, 337–356.Google Scholar
  33. Myneni, R. B., R. Ramakrishna, R. Nemani, et al., 1997: Estimation of global leaf area index and absorbed Par using radiative transfer models. IEEE Trans. Geosci. Remote Sens., 35, 1380–1393, doi: Scholar
  34. Niu, G.-Y., and Z.-L. Yang, 2007: An observation-based formulation of snow cover fraction and its evaluation over large North American river basins. J. Geophys. Res. Atmos., 112, D21101, doi: Scholar
  35. Oleson, K. W., Y. J. Dai, G. Bonan, et al., 2004: Technical Description of the Community Land Model (CLM). NCAR Technical Note NCAR/TN-461+STR. National Center for Atmospheric Research, Boulder, CO, USA, 173 pp.Google Scholar
  36. Parton, W. J., J. W. B. Stewart, and C. V. Cole, 1988: Dynamics of C, N, P and S in grassland soils: A model. Biogeochemistry, 5, 109–131, doi: Scholar
  37. Roesch, A., M. Wild, H. Gilgen, et al., 2001: A new snow cover fraction parametrization for the ECHAM4 GCM. Climate Dyn., 17, 933–946, doi: Scholar
  38. Saatchi, S. S., N. L. Harris, S. Brown, et al., 2011: Benchmark map of forest carbon stocks in tropical regions across three continents. Proc. Natl. Acad. Sci. USA, 108, 9899–9904, doi: Scholar
  39. Sellers, P. J., D. A. Randall, G. J. Collatz, et al., 1996: A revised land surface parameterization (SiB2) for atmospheric GCMs. Part I: Model formulation. J. Climate, 9, 676–705, doi:<0676:ARLSPF>2.0.CO;2.CrossRefGoogle Scholar
  40. Sheffield, J., G. Goteti, and E. F. Wood, 2006: Development of a 50-year high-resolution global dataset of meteorological forcings for land surface modeling. J. Climate, 19, 3088–3111, doi: Scholar
  41. Su, F. G., X. L. Duan, D. L. Chen, et al., 2013: Evaluation of the global climate models in the CMIP5 over the Tibetan Plateau. J. Climate, 26, 3187–3208, doi: Scholar
  42. Subin, Z. M., W. J. Riley, and D. Mironov, 2012: An improved lake model for climate simulations: Model structure, evaluation, and sensitivity analyses in CESM1. J. Adv. Model. Earth Syst., 4, M02001, doi: Scholar
  43. Sun, S. F., J. M. Jin, and Y. K. Xue, 1999: A simple snow-atmosphere-soil transfer model. J. Geophys. Res. Atmos., 104, 19,587–19,597, doi: Scholar
  44. Todd-Brown, K. E. O., J. T. Randerson, W. M. Post, et al., 2013: Causes of variation in soil carbon simulations from CMIP5 earth system models and comparison with observations. Biogeosciences, 10, 1717–1736, doi: Scholar
  45. van den Hurk, B., H. Kim, G. Krinner, et al., 2016: LS3MIP (v1.0) contribution to CMIP6: The land surface, snow and soil moisture model intercomparison project—Aims, setup and expected outcome. Geosci. Model Dev., 9, 2809–2832, doi: Scholar
  46. Wang, C., Z. G. Wei, Z. C. Li, et al., 2017: Testing and improving the performance of the Common Land Model: A case study for the Gobi landscape. J. Meteor. Res., 31, 625–632, doi: Scholar
  47. Wu, T. W., L. C. Song, W. P. Li, et al., 2013: Global carbon budgets simulated by the Beijing Climate Center climate system model for the last century. J. Geophys. Res. Atmos., 118, 4326–4347, doi: Scholar
  48. Wu, T. W., L. C. Song, W. P. Li, et al., 2014: An overview of BCC climate system model development and application for climate change studies. J. Meteor. Res., 28, 34–56, doi: Scholar
  49. Xia, K., and B. Wang, 2015: Evaluation and projection of snow cover fraction over Eurasia. Climatic Environ. Res., 20, 41–52, doi: (in Chinese)Google Scholar
  50. Xia, K., Y. Luo, and W. P. Li, 2011: Simulation of freezing and melting of soil on the northeast Tibetan Plateau. Chinese Sci. Bull., 56, 2145–2155, doi: Scholar
  51. Xue, Y. K., S. F. Sun, D. S. Kahan, et al., 2003: Impact of parameterizations in snow physics and interface processes on the simulation of snow cover and runoff at several cold region sites. J. Geophy. Res. Atmos., 108, 8859, doi: Scholar
  52. Yang, Z.-L., R. E. Dickinson, A. Robock, et al., 1997: Validation of the snow submodel of the biosphere-atmosphere transfer scheme with Russian snow cover and meteorological observational data. J. Climate, 10, 353–373, doi:<0353:VOTSSO>2.0.CO;2.CrossRefGoogle Scholar
  53. Zeng, X. B., M. Shaikh, Y. J. Dai, et al., 2002: Coupling of the common land model to the NCAR community climate model. J. Climate, 15, 1832–1854, doi:<1832:COTCLM>2.0.CO;2.CrossRefGoogle Scholar
  54. Zhang, G., G. S. Zhou, and F. Chen, 2017: Analysis of parameter sensitivity on surface heat exchange in the Noah land surface model at a temperate desert steppe site in China. J. Meteor. Res., 31, 1167–1182, doi: Scholar
  55. Zhou, W. Y., Y. Luo, W. P. Li, et al., 2018: Comparative studies of different radiation schemes within vegetation in a land model. Chinese Sci. Bull., 63, 2772–2784, doi: (in Chinese)CrossRefGoogle Scholar

Copyright information

© The Chinese Meteorological Society and Springer-Verlag Berlin Heidelberg 2019

Authors and Affiliations

  • Weiping Li
    • 1
    • 2
    Email author
  • Yanwu Zhang
    • 1
    • 2
  • Xueli Shi
    • 1
    • 2
  • Wenyan Zhou
    • 1
    • 2
  • Anning Huang
    • 2
    • 3
  • Mingquan Mu
    • 4
  • Bo Qiu
    • 2
    • 3
    • 5
  • Jinjun Ji
    • 6
  1. 1.Laboratory for Climate Studies, National Climate CenterChina Meteorological Administration (CMA)BeijingChina
  2. 2.CMA-NJU Joint Laboratory for Climate Prediction StudiesNanjing University (NJU)NanjingChina
  3. 3.Department of Atmospheric SciencesNanjing UniversityNanjingChina
  4. 4.Department of Earth System ScienceUniversity of California, IrvineIrvineUSA
  5. 5.Jiangsu Provincial Key Laboratory of Geographic Information Science and Technology, International Institute for Earth System ScienceNanjing UniversityNanjingChina
  6. 6.Institute of Atmospheric PhysicsChinese Academy of SciencesBeijingChina

Personalised recommendations