Advertisement

Journal of Meteorological Research

, Volume 33, Issue 4, pp 678–694 | Cite as

Contrast of Evolution Characteristics of Boreal Summer and Winter Intraseasonal Oscillations over Tropical Indian Ocean

  • Qingchi Zhang
  • Tim LiEmail author
  • Jia Liu
Regular Article
  • 6 Downloads

Abstract

A most striking summer—winter difference of evolution of the intraseasonal oscillation (ISO) over the equatorial Indian Ocean is a quasi-stationary oscillation in boreal summer but eastward propagation in boreal winter. This feature is consistent with the observational fact that maximum ISO variance appears only in the eastern Indian Ocean in boreal summer while it appears across the entire basin in boreal winter. The cause of the distinctive propagation and initiation characteristics is investigated through the diagnosis of observational and reanalysis data for the period of 1982–2012. It is found that when the ISO convection appears over eastern Indian Ocean, a positive (negative) moisture tendency appears to the east of the convection in boreal winter (summer). It is the moisture tendency difference that is responsible for different propagation behavior in the summer and winter. A further diagnosis of the moisture budget indicates that the major difference lies in anomalous moisture advection by the mean flow. In addition, air-sea interaction also plays a role. While boreal winter ISO starts over western Indian Ocean, boreal summer ISO is initiated over central-eastern equatorial Indian Ocean, due to boundary layer moistening. The moisture increase is caused primarily by the horizontal advection of mean specific humidity by anomalous easterlies induced by preceding suppressed-phase ISO over eastern Indian Ocean. Besides, a delayed SST feedback also plays a role. The overall difference of ISO evolution between the summer and winter is regulated by the seasonal mean state including the mean SST and water vapor content.

Key words

intraseasonal oscillation seasonality convection initiation and propagation planetary boundary layer moistening air-sea interaction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chang, C. P., 1977: Viscous internal gravity waves and low-frequency oscillations in the tropics. J. Atmos. Sci., 34, 901–910, doi:  https://doi.org/10.1175/1520-0469(1977)034<0901:VIGWAL>2.0.CO;2.CrossRefGoogle Scholar
  2. Chen, W. Y., 1980: Fluctuations in Northern Hemisphere 700 mb height field associated with the southern oscillation. Mon. Wea. Rev., 110, 808–804, doi:  https://doi.org/10.1175/1500-0694(1980)110<0808:FINHMH>2.0.CO;2.CrossRefGoogle Scholar
  3. Davis, R. E., 1976: Predictability of sea surface temperature and sea level pressure anomalies over the North Pacific Ocean. J. Phys. Oceanogr., 6, 269–266, doi:  https://doi.org/10.1175/1520-0485(1976)006<0069:POSSTA>2.0.CO;2.CrossRefGoogle Scholar
  4. Emanuel, K. A., 1987: An air—sea interaction model of intraseasonal oscillations in the tropics. J. Atmos. Sci., 44, 0406–0460, doi:  https://doi.org/10.1175/1520-0469(1987)044<2324:AASIMO>2.0.CO;2.Google Scholar
  5. Fu, X. H., B. Wang, T. Li, et al., 2003: Coupling between northward-propagating, intraseasonal oscillations and sea surface temperature in the Indian Ocean. J. Atmos. Sci., 60, 1733–1753, doi:  https://doi.org/10.1175//1520-6699(2003)060<1733:CBNIOA>2.0.CO;2.CrossRefGoogle Scholar
  6. Fuchs, Z., and D. J. Raymond, 2002: Large-scale modes of a non-rotating atmosphere with water vapor and cloud-radiation feedbacks. J. Atmos. Sci., 59, 1669–1679, doi: 10.117511520-0469(2002)059<1669:LSMOAN>2.0.CO;2.CrossRefGoogle Scholar
  7. Hartmann, D. L., and M. L. Michelsen, 1989: Intraseasonal periodicities in Indian rainfall. J. Atmos. Sci., 48, 2838–2862, doi:  https://doi.org/10.1175/1520-0469(1989)046<2838:IPIIR>2.0.CO;2.CrossRefGoogle Scholar
  8. Hartmann, D. L., M. L. Michelsen, and S. A. Klein, 1992: Seasonal variations of tropical intraseasonal oscillations: A 20–25-day oscillation in the western Pacific. J. Atmos. Sci., 49, 1277–1289, doi:  https://doi.org/10.1175/1520-0469(1992)049<1277:SVOTIO>2.0.CO;2.CrossRefGoogle Scholar
  9. Hsu, H.-H., and C.-H. Weng, 2001: Northwestward propagation of the intraseasonal oscillation in the western North Pacific during the boreal summer: Structure and mechanism. J. Climate, 14, 3834–3850, doi:  https://doi.org/10.1175/1520-0442(2001)014<3834:NPOTIO>2.0.CO;2.CrossRefGoogle Scholar
  10. Hsu, H.-H., B. J. Hoskins, and F.-F. Jin, 1990: The 1985/86 intraseasonal oscillation and the role of the extratropics. J. Atmos. Sci., 47, 823–839, doi:  https://doi.org/10.1175/1520-0469(1990)047<0823:TIOATR>2.0.CO;2.CrossRefGoogle Scholar
  11. Hsu, P.-C., and T. Li, 2012: Role of the boundary layer moisture asymmetry in causing the eastward propagation of the Madden—Julian oscillation. J. Climate, 25, 4914–4931, doi:  https://doi.org/10.1175/JCLI-D-11-00310.1.CrossRefGoogle Scholar
  12. Jiang, X.-A., and T. Li, 2005: Reinitiation of the boreal summer intraseasonal oscillation in the tropical Indian Ocean. J. Climate, 18, 3777–3795, doi:  https://doi.org/10.1175/JCLI3516.1.CrossRefGoogle Scholar
  13. Jiang, X. A., T. Li, and B. Wang, 2004: Structures and mechanisms of the northward propagating boreal summer intraseasonal oscillation. J. Climate, 17, 1022–1039, doi:  https://doi.org/10.1175/1520-0442(2004)017<1022:SAMOTN>2.0.CO;2.CrossRefGoogle Scholar
  14. Jiang, X. A., D. E. Waliser, P. K. Xavier, et al., 2015: Vertical structure and physical processes of the Madden—Julian oscillation: Exploring key model physics in climate simulations. J. Geophys. Res. Atmos., 120, 4718–4748, doi:  https://doi.org/10.1002/2014JD022375.CrossRefGoogle Scholar
  15. Kim, D., J.-S. Kug, and A. H. Sobel, 2014: Propagating versus nonpropagating Madden—Julian oscillation events. J. Climate, 27, 111–125, doi:  https://doi.org/10.1175/JCLI-D-13-00084.1.CrossRefGoogle Scholar
  16. Krishnamurti, T. N., and D. Subrahmanyam, 1982: The 30–50 day mode at 850 mb during MONEX. J. Atmos. Sci., 39, 2088–2095, doi:  https://doi.org/10.1175/1520-0469(1982)039<2088:TDMAMD>2.0.CO;2.CrossRefGoogle Scholar
  17. Lau, K.-M., and L. Peng, 1987: Origin of low-frequency (intraseasonal) oscillations in the tropical atmosphere. Part I: Basic theory. J. Atmos. Sci., 44, 950–970, doi:  https://doi.org/10.1175/1520-0469(1987)044<0950:OOLFOI>2.0.CO;2.CrossRefGoogle Scholar
  18. Lau, K.-M., and C.-H. Sui, 1997: Mechanisms of short-term sea surface temperature regulation: Observations during TOGA COARE. J. Climate, 10, 465–472, doi:  https://doi.org/10.11751/1520-0442(1997)010<0465:MOSTSS>2.0.CO;2.CrossRefGoogle Scholar
  19. Li, C. Y., Cho, H.-R., and J.-T. Wang, 2002: CISK Kelvin wave with evaporation-wind feedback and air—sea interaction—A further study of tropical intraseasonal oscillation mechanism. Adv. Atmos. Sci., 19, 379–390, doi:  https://doi.org/10.1007/s00376-002-0073-1.CrossRefGoogle Scholar
  20. Li, T., 2014: Recent advance in understanding the dynamics of the Madden—Julian oscillation. J. Meteor. Res., 28, 1–33, doi:  https://doi.org/10.1007/s13351-014-3087-6.Google Scholar
  21. Li, T., and B. Wang, 2005: A review on the western North Pacific monsoon: Synoptic-to-interannual variabilities. Terr. Atmos. Oceanic Sci., 16, 285–314, doi:  https://doi.org/10.3319/TAO.2005.16.2.285(A).CrossRefGoogle Scholar
  22. Li, T., and C. H. Zhou, 2009: Planetary scale selection of the Madden—Julian oscillation. J. Atmos. Sci., 11, 2429–2443, doi:  https://doi.org/10.1175/2009JAS2968.1.CrossRefGoogle Scholar
  23. Li, T., and P.-C. Hsu, 2018: Fundamentals of Tropical Climate Dynamics. Springer, 61–106, doi:  https://doi.org/10.1007/978-3-319-595979.
  24. Li, T., F. Tam, X. H. Fu, et al., 2008: Causes of the intraseasonal SST variability in the tropical Indian Ocean. Atmos. Ocean. Sci. Lett., 1, 18–23, doi:  https://doi.org/10.1080/16742834.2008.11446758.CrossRefGoogle Scholar
  25. Li, T., C. B. Zhao, P.-C. Hsu, et al., 2015: MJO initiation processes over the tropical Indian Ocean during DYNAMO/CINDY2011. J. Climate, 28, 2121–2135, doi:  https://doi.org/10.1175/JCLI-D-14-00328.1.CrossRefGoogle Scholar
  26. Madden, R. A., 1986: Seasonal variations of the 40–50 day oscillation in the tropics. J. Atmos. Sci., 43, 3138–3158, doi:  https://doi.org/10.1175/1520-0469(1986)043<3138:SVOTDO>2.0.CO;2.CrossRefGoogle Scholar
  27. Madden, R. A., and P. R. Julian, 1971: Detection of a 40–50 day oscillation in the zonal wind in the tropical Pacific. J. Atmos. Sci., 28, 702–708, doi:  https://doi.org/10.1175/1520-0469(1971)028<0702:DOADOI>2.0.CO;2.CrossRefGoogle Scholar
  28. Madden, R. A., and P. R. Julian, 1972: Description of global-scale circulation cells in the tropics with a 40–50 day period. J. Atmos. Sci., 29, 1109–1123, doi:  https://doi.org/10.1175/1520-0469(1972)029<1109:DOGSCC>2.0.CO;2.CrossRefGoogle Scholar
  29. Madden, R. A., and P. R. Julian, 1994: Observations of the 40–50-day tropical oscillation—A review. Mon. Wea. Rev., 122, 814–837, doi:  https://doi.org/10.1175/1520-0493(1994)122<0814:OTDDTO>2.0.CO;2.CrossRefGoogle Scholar
  30. Maloney, E. D., 2009: The moist static energy budget of a composite tropical intraseasonal oscillation in a climate model. J. Climate, 22, 711–729, doi:  https://doi.org/10.1175/2008JCLI2542.1.CrossRefGoogle Scholar
  31. Matthews, A. J., 2000: Propagation mechanisms for the Madden—Julian oscillation. Quart. J. Roy. Meteor. Soc., 126, 2637–2651, doi:  https://doi.org/10.1002/qj.49712656902.CrossRefGoogle Scholar
  32. Matthews, A. J., 2008: Primary and successive events in the Madden—Julian oscillation. Quart. J. Roy. Meteor. Soc., 134, 439–453, doi:  https://doi.org/10.1002/qj.224.CrossRefGoogle Scholar
  33. Mei, S. L., T. Li, and W. Chen, 2015: Three-type MJO initiation processes over the western equatorial Indian Ocean. Adv. Atmos. Sci., 32, 1208–1216, doi:  https://doi.org/10.1007/s00376-015-4201-0.CrossRefGoogle Scholar
  34. Murakami, T., 1980: Empirical orthogonal function analysis of satellite-observed outgoing longwave radiation during summer. Mon. Wea. Rev., 108, 205–222, doi: 10.117511520-0493(1980)108<0205:EOFAOS>2.0.CO;2.CrossRefGoogle Scholar
  35. Murakami, T., and T. Nakazawa, 1985: Tropical 45 day oscillations during the 1979 Northern Hemisphere summer. J. Atmos. Sci., 42, 1107–1122, doi: 10.117511220-0469(1855)042<1107:TDODTN>2.0.CO;2.CrossRefGoogle Scholar
  36. Neelin, J. D., I. M. Held, and K. H. Cook, 1987: Evaporation—wind feedback and low-frequency variability in the tropical atmosphere. J. Atmos. Sci., 44, 2341–2348, doi:  https://doi.org/10.1175/1520-0469(1987)044<2341:EWFALF>2.0.CO;2.CrossRefGoogle Scholar
  37. Roxy, M., and Y. Tanimoto, 2012: Influence of sea surface temperature on the intraseasonal variability of the South China Sea summer monsoon. Climate Dyn., 39, 1209–1218, doi:  https://doi.org/10.1007/s00382-011-1118-x.CrossRefGoogle Scholar
  38. Seo, K.-H., and K.-Y. Kim, 2003: Propagation and initiation mechanisms of the Madden—Julian oscillation. J. Geophys. Res. Atmos., 108, 4384, doi:  https://doi.org/10.1029/2002JD002876.CrossRefGoogle Scholar
  39. Seo, K.-H., and E.-J. Song, 2012: Initiation of boreal summer intraseasonal oscillation: Dynamic contribution by potential vorticity. Mon. Wea. Rev., 140, 1748–1760, doi:  https://doi.org/10.1175/MWR-D-11-00105.1.CrossRefGoogle Scholar
  40. Sobel, A., and E. Maloney, 2013: Moisture modes and the eastward propagation of the MJO. J. Atmos. Sci., 70, 187–192, doi:  https://doi.org/10.1175/JAS-D-12-0189.1.CrossRefGoogle Scholar
  41. Sobel, A. H., J. Nilsson, and L. M. Polvani, 2001: The weak temperature gradient approximation and balanced tropical moisture waves. J. Atmos. Sci., 58, 3650–3665, doi:  https://doi.org/10.1175/1520-0469(2001)058<3650:TWTGAA>2.0.CO;2.CrossRefGoogle Scholar
  42. Sperber, K. R., 2003: Propagation and the vertical structure of the Madden-Julian oscillation. Mon. Wea. Rev., 131, 3018–3037, doi:  https://doi.org/10.1175/1520-0493(2003)131<3018:PATVSO>2.0.CO;2.CrossRefGoogle Scholar
  43. Sperber, K. R., J. M. Slingo, P. M. Inness, et al., 1997: On the maintenance and initiation of the intraseasonal oscillation in the NCEP/NCAR reanalysis and in the GLA and UKMO AMIP simulations. Climate Dyn., 13, 769–795, doi:  https://doi.org/10.1007/s003820050197.CrossRefGoogle Scholar
  44. Stephens, G. L., P. J. Webster, R. H. Johnson, et al., 2004: Observational evidence for the mutual regulation of the tropical hydrological cycle and tropical sea surface temperatures. J. Climate, 71, 2213–2224, doi:  https://doi.org/10.1175/1520-0442(2004)017<2213:OEFTMR>2.0.CO;2.CrossRefGoogle Scholar
  45. Vecchi, G. A., and D. E. Harrison, 2002: Monsoon breaks and sub-seasonal sea surface temperature variability in the Bay of Bengal. J. Climate, 15, 1485–1493, doi:  https://doi.org/10.1175/1520-0442(2002)015<1485:MBASSS>2.0.CO;2.CrossRefGoogle Scholar
  46. Wang, B., and H. Rui, 1990: Synoptic climatology of transient tropical intraseasonal convection anomalies: 1975–1985. Meteor. Atmos. Phys., 44, 43–61, doi:  https://doi.org/10.1007/BF01026810.CrossRefGoogle Scholar
  47. Wang, B., and T. M. Li, 1994: Convective interaction with boundary-layer dynamics in the development of a tropical intraseasonal system. J. Atmos. Sci., 11, 1386–1400, doi:  https://doi.org/10.1175/1520-0469(1994)051<1386:CIWBLD>2.0.CO;2.CrossRefGoogle Scholar
  48. Wang, L., T. Li, E. Maloney, et al., 2017: Fundamental causes of propagating and nonpropagating MJOs in MJOTF/GASS models. J. Climate, 30, 3743–3769, doi:  https://doi.org/10.1175/JCLI-D-16-0765.1.CrossRefGoogle Scholar
  49. Wu, M.-L. C., S. D. Schubert, M. J. Suarez, et al., 2006: Seasonality and meridional propagation of the MJO. J. Climate, 19, 1901–1921, doi:  https://doi.org/10.1175/JCLI3680.1.CrossRefGoogle Scholar
  50. Yanai, M., S. Esbensen, and J.-H. Chu, 1973: Determination of bulk properties of tropical cloud clusters from large-scale heat and moisture budgets. J. Atmos. Sci., 30, 611–627, doi:  https://doi.org/10.1175/1520-0469(1973)030<0611:DOBPOT>2.0.CO;2.CrossRefGoogle Scholar
  51. Yasunari, T., 1979: Cloudiness fluctuation associated with the Northern Hemisphere summer monsoon. J. Meteor. Soc. Japan, 57, 227–242, doi:  https://doi.org/10.2151/jmsj1965.57.3_227.CrossRefGoogle Scholar
  52. Zhang, C. D., 2005: Madden-Julian oscillation. Rev. Geophys., 43, RG2003, doi:  https://doi.org/10.1029/2004RG000158.Google Scholar
  53. Zhao, C. B., T. Li, and T. J. Zhou, 2013: Precursor signals and processes associated with MJO initiation over the tropical Indian Ocean. J. Climate, 26, 291–307, doi:  https://doi.org/10.1175/JCLI-D-12-00113.1.CrossRefGoogle Scholar

Copyright information

© The Chinese Meteorological Society and Springer-Verlag Berlin Heidelberg 2019

Authors and Affiliations

  1. 1.Key Laboratory of Meteorological Disaster, Ministry of Education (KLME)/Joint International Research Laboratory of Climate and Environmental Change (ILCEC)ICollaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD)Nanjing University of Information Science & TechnologyNanjingChina
  2. 2.International Pacific Research Center and Department of Atmospheric SciencesUniversity of Hawaii at ManoaHonoluluUSA

Personalised recommendations