Advertisement

Journal of Meteorological Research

, Volume 33, Issue 3, pp 400–415 | Cite as

Impact of Surface Potential Vorticity Density Forcing over the Tibetan Plateau on the South China Extreme Precipitation in January 2008. Part I: Data Analysis

  • Tingting Ma
  • Guoxiong Wu
  • Yimin LiuEmail author
  • Zhihong Jiang
  • Jiahui Yu
Special Collection on the Third Tibetan Plateau Atmospheric Science Experiment (TIPEX-III)

Abstract

The external source/sink of potential vorticity (PV) is the original driving force for the atmospheric circulation. The relationship between surface PV generation and surface PV density forcing is discussed in detail in this paper. Moreover, a case study of the extreme winter freezing rain/snow storm over South China in January 2008 is performed, and the surface PV density forcing over the eastern flank of the Tibetan Plateau (TP) has been found to significantly affect the precipitation over South China in this case. The TP generated PV propagated eastward in the middle troposphere. The associated zonal advection of positive absolute vorticity resulted in the increasing of cyclonic relative vorticity in the downstream region of the TP. Ascending air and convergence in the lower troposphere developed, which gave rise to the development of the southerly wind. This favored the increasing of negative meridional absolute vorticity advection in the lower troposphere, which provided a large-scale circulation background conducive to ascending motion such that the absolute vorticity advection increased with height. Consequently, the ascending air further strengthened the southerly wind and the vertical gradient of absolute vorticity advection between the lower and middle troposphere in turn. Under such a situation, the enhanced ascending, together with the moist air transported by the southerly wind, formed the extreme winter precipitation in January 2008 over South China.

Key words

potential vorticity density (PVD) absolute vorticity advection Tibetan Plateau winter precipitation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgment

The authors thank the Global Modeling and Assimilation Office (GMAO) and GES DISC for providing the MERRA-2 data.

References

  1. Bao, Q., Y. M. Yang, Y. M. Liu, et al., 2010: Roles of anomalous Tibetan Plateau warming on the severe 2008 winter storm in central-southern China. Mon. Wea. Rev., 138, 2375–2384, DOI:  https://doi.org/10.1175/2009MWR2950.1.CrossRefGoogle Scholar
  2. Bracegirdle, T. J., and S. L. Gray, 2009: The dynamics of a polar low assessed using potential vorticity inversion. Quart. J. Roy. Meteor. Soc., 135, 880–893, DOI:  https://doi.org/10.1002/qj.411.CrossRefGoogle Scholar
  3. Chen, S. J., and L. Dell’osso, 1984: Numerical prediction of the heavy rainfall vortex over eastern Asia monsoon region. J. Meteor. Soc. Japan, 62, 730–747, DOI:  https://doi.org/10.2151/jmsjl965.62.5_730.CrossRefGoogle Scholar
  4. Chen, Y. R., Y. Q. Li, and T. L. Zhao, 2015: Cause analysis on eastward movement of Southwest China vortex and its induced heavy rainfall in South China. Adv. Meteor. DOI:  https://doi.org/10.1155/2015/481735.
  5. Cheng, X. L., Y. Q. Li, and L. Xu, 2016: An analysis of an extreme rainstorm caused by the interaction of the Tibetan Plateau vortex and the Southwest China vortex from an intensive observation. Meteor. Atmos. Phys., 128, 373–399, DOI:  https://doi.org/10.1007/S00703-015-0420-2.CrossRefGoogle Scholar
  6. Ding, Y. H., Z. Y. Wang, and Y. F. Song, 2008: Causes of the unprecedented freezing disaster in January 2008 and its possible association with the global warming. Acta Meteor. Sinica, 66, 808–825. (in Chinese)Google Scholar
  7. Egger, J., K. P. Hoinka, and T. Spengler, 2015: Aspects of potential vorticity fluxes: Climatology and impermeability. J. Atmos. Sci., 72, 3257–3267, DOI:  https://doi.org/10.1175/JAS-D-14-0196.1.CrossRefGoogle Scholar
  8. Ertel, H., 1942: Ein neuer hydrodynamische wirbelsatz. Meteor. Z. Braunschweig, 59, 33–49.Google Scholar
  9. Fu, S. M., J. H. Sun, S. X. Zhao, et al., 2011: A study of the impacts of the eastward propagation of convective cloud systems over the Tibetan Plateau on the rainfall of the Yangtze-Huai River basin. Acta Meteor. Sinica, 69, 581–600. (in Chinese)Google Scholar
  10. Gelaro, R., W. McCarty, M. J. Suarez, et al., 2017: The Mordern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2). J. Climate, 30, 5419–5454, DOI:  https://doi.org/10.1175/JCLI-D-16-0758.1.CrossRefGoogle Scholar
  11. Griffiths, M., A. J. Thorpe, and K. A. Browning, 2000: Convective destabilization by a tropopause fold diagnosed using potential vorticity inversion. Quart. J. Roy. Meteor. Soc., 126, 125–144, DOI:  https://doi.org/10.1256/smsqj.56206.CrossRefGoogle Scholar
  12. Gu, L., K. Wei, and R. H. Huang, 2008: Severe disaster of blizzard, freezing rain and low temperature in January 2008 in China and its association with the anomalies of East Asian monsoon system. Climatic Environ. Res., 13, 405–418. (in Chinese)Google Scholar
  13. Guo, Z., H. Lin, J. Jiang, et al., 2003: The features of MCS and their eastward moving and propagation over the Tibetan Plateau. J. Remote Sens., 7, 350–357. (in Chinese)Google Scholar
  14. Haynes, P. H., and M. E. McIntyre, 1987: On the evolution of vorticity and potential vorticity in the presence of diabatic heating and frictional or other forces. J. Atmos. Sci., 44, 828–841, doi:  https://doi.org/10.1175/1520-0469(1987)044<0828:OTEOVA>2.0.CO;2.CrossRefGoogle Scholar
  15. Held, I. M., and T. Schneider, 1999: The surface branch of the zonally averaged mass transport in the troposphere. J. Atmos. Sci., 56, 1688–1697, DOI:  https://doi.org/10.1175/1520-0469(1999)056<1688:TSBOTZ>2.0.CO;2.CrossRefGoogle Scholar
  16. Holton, J. R., 2004: An Introduction to Dynamic Meteology. Elsevier Academic Press, 535 pp.Google Scholar
  17. Hoskins, B. J., 1991: Towards a PV-θ view of the general circulation. Tellus, 43AB, 27–35.Google Scholar
  18. Hoskins, B. J., 1997: A potential vorticity view of synoptic development. Meteor. Appl., 4, 325–334, DOI:  https://doi.org/10.1017/S1350482797000716.CrossRefGoogle Scholar
  19. Hoskins, B. J., M. E. McIntyre, and A. W. Robertson, 1985: On the use and significance of isentropic potential vorticity maps. Quart. J. Roy. Meteor. Soc., 111, 877–946, DOI:  https://doi.org/10.1002/qj.49711147002.CrossRefGoogle Scholar
  20. Huo, Z., D. L. Zhang, and J. R. Gyakum, 1999: Interaction of potential vorticity anomalies in extratropical cyclogenesis. Part I: Static piecewise inversion. Mon. Wea. Rev., 127, 2546–2661, DOI:  https://doi.org/10.1175/1520-0493(1999)127<2546:IOPVAI>2.0.CO;2.CrossRefGoogle Scholar
  21. Jiang, J. X., X. K. Xiang, and M. Z. Fan, 1996: The spatial and temporal distributions of severe mesoscale convective system over Tibetan Plateau in summer. J. Appl. Meteor. Sci., 7, 473–178. (in Chinese)Google Scholar
  22. Koh, T. Y., and R. Plumb, 2004: Isentropic zonal average formalism and the near-surface circulation. Quart. J. Roy. Meteor. Soc., 130, 1631–1653, DOI:  https://doi.org/10.1256/qj.02.219.CrossRefGoogle Scholar
  23. Li, G. P., and Q. Xu, 2005: Effect of dynamic pumping in the boundary layer on the Tibetan Plateau vortices. Chinese J. Atmos. Sci., 29, 965–972. (in Chinese)Google Scholar
  24. Li, G. P., T. Y. Duan, S. Haginoya, et al., 2001: Estimates of the bulk transfer coefficients and surface fluxes over the Tibetan Plateau using AWS data. J. Meteor. Soc. Japan, 79, 625–635, DOI:  https://doi.org/10.2151/jmsj.79.625.CrossRefGoogle Scholar
  25. Li, L. F., Y. M. Liu, and C. Y. Bo, 2011: Impacts of diabatic heating anomalies on an extreme snow event over South China in January 2008. Climatic Environ. Res., 16, 126–136. (in Chinese)Google Scholar
  26. Li, Y. D., Y. Wang, S. Yang, et al., 2008: Characteristics of summer convective systems initiated over the Tibetan Plateau. Part I: Origin, track, development, and precipitation. J. Appl. Meteor. Climatol., 47, 2679–2695, DOI:  https://doi.org/10.1175/2008JAMC1695.1.CrossRefGoogle Scholar
  27. Liao, Z. J., and Y. C. Zhang, 2013: Concurrent variation between the East Asian subtropical jet and polar front jet during persistent snowstorm period in 2008 winter over southern China. J Geophys. Res. Atmos., 118, 6360–6373, DOI:  https://doi.org/10.1002/jgrd.50558.CrossRefGoogle Scholar
  28. Ni, C. C., G. P. Li, and X. Z. Xiong, 2017: Analysis of a vortex precipitation event over Southwest China using AIRS and in situ measurements. Adv. Atmos. Sci., 34, 559–570, DOI:  https://doi.org/10.1007/s00376-016-5262-4.CrossRefGoogle Scholar
  29. Rossby, C. G., 1940: Planetary flow patterns in the atmosphere. Quart. J. Roy. Meteor. Soc., 66, 68–87.Google Scholar
  30. Schneider, T., 2005: Zonal momentum balance, potential vorticity dynamics, and mass fluxes on near-surface isentropes. J. Atmos. Sci., 62, 1884–1900, DOI:  https://doi.org/10.1175/JAS3341.1.CrossRefGoogle Scholar
  31. Schneider, T., I. M. Held, and S. T. Garner, 2003: Boundary effects in potential vorticity dynamics. J. Atmos. Sci., 60, 1024–1040, DOI:  https://doi.org/10.1175/1520-0469(2003)60<1024:BEIPVD> 2.0.CO;2.CrossRefGoogle Scholar
  32. Shaw, S. N., 1930: Manual of Meteorology. Vol III: The Physical Processes of Weather. Cambridge University Press, 86.Google Scholar
  33. Shi, C. X., J. X. Jiang, and Z. Y. Fang, 2000: A study on the features of severe convective cloud clusters causing serious flooding over Changjiang River basin in 1998. Climatic Environ. Res., 5, 279–286. (in Chinese)Google Scholar
  34. Shi, N., C. L. Bueh, L. R. Ji, et al., 2008: On the medium-range process of the rainy, snowy and cold weather of South China in early 2008. Part II: Characteristics of the western Pacific subtropical high. Climatic Environ. Res., 13, 434–445. (in Chinese)Google Scholar
  35. Sun, J. H., and S. X. Zhao, 2008: Quasi-stationary front and stratification structure of the freezing rain and snow storm over southern China in January 2008. Climatic Environ. Res., 13, 368–384. (in Chinese)Google Scholar
  36. Sun, J. H., and S. X. Zhao, 2010: The impacts of multiscale weather systems on freezing and snowstorms over southern China. Wea. Forecasting, 25, 388–407, DOI:  https://doi.org/10.1175/2008WEF2222253.1.CrossRefGoogle Scholar
  37. Tao, S. Y., and Y. H. Ding, 1981: Observational evidence of the influence of the Qinghai-Xizang (Tibet) Plateau on the occurrence of heavy rain and severe convective storms in China. Bull. Amer. Meteor. Soc., 62, 23–30, DOI:  https://doi.org/10.1175/15200477(1981)062<0023:OEOTIO>2.0.CO;2.CrossRefGoogle Scholar
  38. Tao, S. Y., and J. Wei, 2008: Severe snow and freezing-rain in January 2008 in southern China. Climatic Environ. Res., 13, 337–350. (in Chinese)Google Scholar
  39. Tao, Z. Y., Y. G. Zheng, and X. L. Zhang, 2008: Southern China quasi-stationary front during ice-snow disaster of January 2008. Acta Meteor. Sinica, 66, 850–854. (in Chinese)Google Scholar
  40. Wang, B., and I. Orlanski, 1987: Study of a heavy rain vortex formed over the eastern flank of the Tibetan Plateau. Mon. Wea. Rev., 115, 1370–1393, DOI:  https://doi.org/10.1175/1520-0493(1987)115<1370:SOAHRV>2.0.CO;2.CrossRefGoogle Scholar
  41. Wang, W., Y. H. Kuo, and T. T. Warner, 1993: A diabatically driven mesoscale vortex in the lee of the Tibetan Plateau. Mon. Wea. Rev., 121, 2542–2561, DOI:  https://doi.org/10.1175/1520-0493(1993)121<2542:ADDMVI>2.0.CO;2.CrossRefGoogle Scholar
  42. Wang, X. M., and Y. Liu, 2017: Causes of extreme rainfall in May 2013 over Henan Province: The role of the southwest vortex and low-level jet. Theor. Appl. Climatol., 129, 701–709, DOI:  https://doi.org/10.1007/s00704-017-2054-4.CrossRefGoogle Scholar
  43. Wen, M., S. Yang, A. Kumar, et al., 2009: An analysis of the large-scale climate anomalies associated with the snowstorms affecting China in January 2008. Mon. Wea. Rev., 137, 1111–1131, DOI:  https://doi.org/10.1175/2008MWR2638.1.CrossRefGoogle Scholar
  44. Wu, G. X., Y. J. Zheng, and Y. M. Liu, 2013: Dynamical and thermal problems in vortex development and movement. Part II: Generalized slantwise vorticity development. Acta Meteor. Sinica, 27, 15–25, DOI:  https://doi.org/10.1007/sl3351-013-0102-2.CrossRefGoogle Scholar
  45. Xiang, S. Y., Y. Q. Li, D. Li, et al., 2013: An analysis of heavy precipitation caused by a retracing plateau vortex based on TRMM data. Meteor. Atmos. Phys., 122, 33–15, DOI:  https://doi.org/10.1007/s00703-013-0269-l.CrossRefGoogle Scholar
  46. Yasunari, T., and T. Miwa, 2006: Convective cloud systems over the Tibetan Plateau and their impact on meso-scale disturbances in the Meiyu/Baiu frontal zonal. A case study in 1998. J. Meteor. Soc. Japan, 84, 783–803, DOI:  https://doi.org/10.2151/jmsj.84.783.CrossRefGoogle Scholar
  47. Yu, J. H., Y. M. Liu, T. T. Ma, et al., 2019: Impact of surface potential vorticity density forcing over the Tibetan Plateau on the South China extreme precipitation in January 2008. Part II: Numerical simulation. J. Meteor. Res., 33, 416–432, DOI:  https://doi.org/10.1007/sl3351-019-8606-z.Google Scholar
  48. Zhang, C. Y., and Y. C. Zhang, 2013: The characteristics of East Asian jet stream in severe snow storm and freezing rain processes over southern China in early 2008. J. Trop. Meteor., 29, 306–314. (in Chinese)Google Scholar
  49. Zheng, Y. J., G. X. Wu, and Y. M. Liu, 2013: Dynamic and thermal problems in vortex development and movement. Part 1: A PV-Q view. Acta Meteor. Sinica, 27, 1–14, DOI:  https://doi.org/10.1007/sl3351-013-0101-3.CrossRefGoogle Scholar
  50. Zhou, W., J. C. L. Chan, W. Chen, et al., 2009: Synoptic-scale controls of persistent low temperature and icy weather over southern China in January 2008. Mon. Wea. Rev., 137, 3978–3991, DOI:  https://doi.org/10.1175/2009MWR2952.1.CrossRefGoogle Scholar
  51. Zhuo, G., X. D. Xu, and L. S. Chen, 2002: Instability of eastward movement and development of convective cloud clusters over Tibetan Plateau. J. Appl. Meteor. Sci., 13, 448–456. (in Chinese)Google Scholar
  52. Zuo, Q. J., S. T. Gao, and X. G. Sun, 2017: An effect study of the East Asian jet stream on the freezing rain and snowstorms event over southern China in early 2008 and possible reasons for the jet stream variation. Climatic Environ. Res., 22, 381–391, DOI:  https://doi.org/10.3878/j.issn.l006-9585.2016.16072. (in Chinese)Google Scholar

Copyright information

© The Chinese Meteorological Society and Springer-Verlag Berlin Heidelberg 2019

Authors and Affiliations

  • Tingting Ma
    • 1
    • 2
  • Guoxiong Wu
    • 2
    • 3
  • Yimin Liu
    • 2
    • 3
    Email author
  • Zhihong Jiang
    • 1
  • Jiahui Yu
    • 1
    • 2
    • 4
  1. 1.Key Laboratory of Meteorological Disaster of Ministry of Education / Joint International Research Laboratory of Climate and Environmental ChangeNanjing University of Information Science & TechnologyNanjingChina
  2. 2.State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric PhysicsChinese Academy of SciencesBeijingChina
  3. 3.College of Earth ScienceUniversity of Chinese Academy of SciencesBeijingChina
  4. 4.Center for Excellence in Tibetan Plateau Earth SciencesChinese Academy of SciencesBeijingChina

Personalised recommendations