Advertisement

Journal of Meteorological Research

, Volume 33, Issue 3, pp 375–399 | Cite as

The Tibetan Plateau Surface-Atmosphere Coupling System and Its Weather and Climate Effects: The Third Tibetan Plateau Atmospheric Science Experiment

  • Ping ZhaoEmail author
  • Yueqing Li
  • Xueliang Guo
  • Xiangde Xu
  • Yimin Liu
  • Shihao Tang
  • Wenming Xiao
  • Chunxiang Shi
  • Yaoming Ma
  • Xing Yu
  • Huizhi Liu
  • La Jia
  • Yun Chen
  • Yanju Liu
  • Jian Li
  • Dabiao Luo
  • Yunchang Cao
  • Xiangdong Zheng
  • Junming Chen
  • An Xiao
  • Fang Yuan
  • Donghui Chen
  • Yang Pang
  • Zhiqun Hu
  • Shengjun Zhang
  • Lixin Dong
  • Juyang Hu
  • Shuai Han
  • Xiuji Zhou
Special Collection on the Third Tibetan Plateau Atmospheric Science Experiment (TIPEX-III)
  • 143 Downloads

Abstract

The Tibetan Plateau (TP) is a key area affecting forecasts of weather and climate in China and occurrences of extreme weather and climate events over the world. The China Meteorological Administration, the National Natural Science Foundation of China, and the Chinese Academy of Sciences jointly initiated the Third Tibetan Plateau Atmospheric Science Experiment (TIPEX-III) in 2013, with an 8–10-yr implementation plan. Since its preliminary field measurements conducted in 2013, routine automatic sounding systems have been deployed at Shiquanhe, Gaize, and Shenzha stations in western TP, where no routine sounding observations were available previously. The observational networks for soil temperature and soil moisture in the central and western TP have also been established. Meanwhile, the plateau-scale and regional-scale boundary layer observations, cloud-precipitation microphysical observations with multiple radars and aircraft campaigns, and tropospheric-stratospheric air composition observations at multiple sites, were performed. The results so far show that the turbulent heat exchange coefficient and sensible heat flux are remarkably lower than the earlier estimations at grassland, meadow, and bare soil surfaces of the central and western TP. Climatologically, cumulus clouds over the main body of the TP might develop locally instead of originating from the cumulus clouds that propagate northward from South Asia. The TIPEX-III observations up to now also reveal diurnal variations, macro- and microphysical characteristics, and water-phase transition mechanisms, of cumulus clouds at Naqu station. Moreover, TIPEX-III related studies have proposed a maintenance mechanism responsible for the Asian “atmospheric water tower” and demonstrated the effects of the TP heating anomalies on African, Asian, and North American climates. Additionally, numerical modeling studies show that the Γ distribution of raindrop size is more suitable for depicting the TP raindrop characteristics compared to the M-P distribution, the overestimation of sensible heat flux can be reduced via modifying the heat transfer parameterization over the TP, and considering climatic signals in some key areas of the TP can improve the skill for rainfall forecast in the central and eastern parts of China. Furthermore, the TIPEX-III has been promoting the technology in processing surface observations, soundings, and radar observations, improving the quality of satellite retrieved soil moisture and atmospheric water vapor content products as well as high-resolution gauge-radar-satellite merged rainfall products, and facilitating the meteorological monitoring, forecasting, and data sharing operations.

Key words

Tibetan Plateau field observation data processing weather and climate numerical forecasting 

Notes

Acknowledgment

We thank the CMA, the NSFC, the CAS, and the TIPEX-III lead group, expert group, participating institutes for their support to the TIPEX-III. We also thank the TIPEX-III implementation group, participants, and management office for their hard work.

References

  1. Bai, B. R., and Z. Y. Hu, 2016: Significance of the thermal effects of the Qinghai-Xizang Plateau to the onset of plateau summer monsoon. Plateau Meteor., 35, 329–336. (in Chinese)Google Scholar
  2. Boos, W. R., and Z. M. Kuang, 2010: Dominant control of the South Asian monsoon by orographic insulation versus plateau heating. Nature, 463, 218–222, DOI:  https://doi.org/10.1038/nature08707.CrossRefGoogle Scholar
  3. Chang, Y., and X. L. Guo, 2016: Characteristics of convective cloud and precipitation during summer time at Naqu over Tibetan Plateau. Chinese Sci. Bull., 61, 1706–1720, DOI:  https://doi.org/10.1360/N972015-01292. (in Chinese)Google Scholar
  4. Chen, L. S., X. D. Xu, and S. Q. Yu, 1999: The second Tibetan Plateau field experiment: Air-land process and planetary boundary layer observational study. Ann. Rep. Chinese Acad. Meteor. Sci., 15–16.Google Scholar
  5. Chen, L. X., 1999: China-Japan cooperative research on Asian monsoon mechanisms. Ann. Rep. Chinese Acad. Meteor. Sci., 26–26.Google Scholar
  6. Chen, X. L., T. J. Zhou, and L. W. Zou, 2013: Variation characteristics of the Asian-Pacific Oscillation in boreal summer as simulated by the LASG/IAP climate system model FGOALS_gl. Acta Meteor. Sinica, 71, 23–37, DOI:  https://doi.org/10.11676/qxxb2013.002. (in Chinese)Google Scholar
  7. Chen, X. L., Y. M. Liu, and G. X. Wu, 2017: Understanding the surface temperature cold bias in CMIP5 AGCMs over the Tibetan Plateau. Adv. Atmos. Sci., 34, 1447–1460, DOI:  https://doi.org/10.1007/s00376-017-6326-9.CrossRefGoogle Scholar
  8. Chen, Y. L., Y. F. Fu, T. Xian, et al., 2017: Characteristics of cloud cluster over the steep southern slopes of the Himalayas observed by CloudSat. Int. J. Climatol, 37, 4043–4052, DOI:  https://doi.org/10.1002/joc.4992.CrossRefGoogle Scholar
  9. Cong, C., W. L. Li, and X. J. Zhou, 2002: Mass exchange between the stratosphere and troposphere over the Tibetan Plateau and its adjacent region. Chinese Sci. Bull., 46, 1914–1918.Google Scholar
  10. Dong, W. H., Y. L. Lin, J. S. Wright, et al., 2016: Summer rainfall over the southwestern Tibetan Plateau controlled by deep convection over the Indian subcontinent. Nat. Commun., 7, 10,925, DOI:  https://doi.org/10.1038/ncomms10925.Google Scholar
  11. Duan, A. M., G. X. Wu, Y. M. Liu, et al., 2012: Weather and climate effects of the Tibetan Plateau. Adv. Atmos. Sci., 29, 978–992, DOI:  https://doi.org/10.1007/s00376-012-1220-y.CrossRefGoogle Scholar
  12. Feng, L., and T. J. Zhou, 2012: Water vapor transport for summer precipitation over the Tibetan Plateau: Multidata set analysis. J. Geophys. Res. Atmos., 117, D20114, DOI:  https://doi.org/10.1029/2011JD017012.CrossRefGoogle Scholar
  13. Gao, W. H., C. H. Sui, J. W. Fan, et al., 2016: A study of cloud microphysics and precipitation over the Tibetan Plateau by radar observations and cloud-resolving model simulations. J. Geophys. Res. Atmos., 121, 13735–13752, DOI:  https://doi.org/10.1002/2015JD024196.CrossRefGoogle Scholar
  14. Gao, W. H., L. P. Liu, J. Li, et al., 2018: The microphysical properties of convective precipitation over the Tibetan Plateau by a subkilometer resolution cloud-resolving simulation. J. Geophys. Res. Atmos., 123, 3212–3227, DOI:  https://doi.org/10.1002/2017JD027812.CrossRefGoogle Scholar
  15. Guo, Y. P., 2013: The changing characteristics of water cycle over the Qinghai-Xizang Plateau in last 40 years. Master dissertation, Lanzhou University, Lanzhou, China, 77 pp. (in Chinese)Google Scholar
  16. Han, C. B., Y. M. Ma, Z. B. Su, et al., 2015: Estimates of effective aerodynamic roughness length over mountainous areas of the Tibetan Plateau. Quart. J. Roy. Meteor. Soc., 141, 1457–1465, DOI:  https://doi.org/10.1002/qj.2462.CrossRefGoogle Scholar
  17. Han, C. B., Y. M. Ma, X. L. Chen, et al., 2017: Trends of land surface heat fluxes on the Tibetan Plateau from 2001 to 2012. Int. J. Climatol., 37, 4757–4767, DOI:  https://doi.org/10.1002/joc.5119.CrossRefGoogle Scholar
  18. Han, Y. Z., W. Q. Ma, Y. M. Ma, et al., 2019: Variations of surface heat fluxes over the Tibetan Plateau before and after the onset of the South Asian summer monsoon during 1979–2016. J. Meteor. Res., 33, 491–500, DOI:  https://doi.org/10.1007/sl3351-019-8616-x.Google Scholar
  19. He, B., G. X. Wu, Y. M. Liu, et al., 2015: Astronomical and hydrological perspective of mountain impacts on the Asian summer monsoon. Sci. Rep., 5, 17586, DOI:  https://doi.org/10.1038/srepl7586.CrossRefGoogle Scholar
  20. Hong, J. C., J. P. Guo, J. Du, et al., 2016: An observational study on the vertical structure of the upper troposphere and lower stratosphere in Gaize of Tibet during the rainy season. Acta Meteor. Sinica, 74, 827–836, DOI:  https://doi.org/10.11676/qxxb2016.055. (in Chinese)Google Scholar
  21. Hu, H., Y. C. Cao, C. Yin, et al., 2018: A comparative analysis of precipitable water vapor in the Tibetan Plateau. Acta Meteor. Sinica, 76, 1029–1039, DOI:  https://doi.org/10.11676/qxxb2018.055. (in Chinese)Google Scholar
  22. Hu, L., D. F. Deng, S. T. Gao, et al., 2016: The seasonal variation of Tibetan Convective Systems: Satellite observation. J. Geophys. Res. Atmos., 121, 5512–5525, DOI:  https://doi.org/10.1002/2015JD024390.CrossRefGoogle Scholar
  23. Hu, L., D. F. Deng, X. D. Xu, et al., 2017: The regional differences of Tibetan Convective Systems in boreal summer. J. Geophys. Res. Atmos., 122, 7289–7299, DOI:  https://doi.org/10.1002/2017JD026681.CrossRefGoogle Scholar
  24. Hu, Q., D. B. Jiang, and G. Z. Fan, 2014: Evaluation of CMIP5 models over the Qinghai-Tibetan Plateau. Chinese J. Atmos. Sci., 38, 924–938, DOI:  https://doi.org/10.3878/j.issn.1006-9895.2013.13197. (in Chinese)Google Scholar
  25. Kim, Y. S., T. Shibata, Y. Iwasaka, et al., 2003: Enhancement of aerosols near the cold tropopause in summer over Tibetan Plateau: Lidar and balloonborne measurements in 1999 at Lhasa, Tibet, China. Proceedings of SPIE 4893, Lidar Remote Sensing for Industry and Environment Monitoring III, SPIE, Hangzhou, China, 496–503, DOI:  https://doi.org/10.1117/12.466090.CrossRefGoogle Scholar
  26. Li, B., M. Zhang, S. H. Tang, et al., 2018: Variations of soil moisture over Nagqu at different time scales based on network observations. Acta Meteor. Sinica, 76, 1040–1052, DOI:  https://doi.org/10.11676/qxxb2018.057. (in Chinese)Google Scholar
  27. Li, B., L. Yang, and S. H. Tang, 2019: Intraseasonal variations of summer convection over the Tibetan Plateau revealed by geostationary satellite FY-2E in 2010–14. J. Meteor. Res., 33, 478–490, DOI:  https://doi.org/10.1007/sl3351-019-8610-3.CrossRefGoogle Scholar
  28. Li, J., 2018: Hourly station-based precipitation characteristics over the Tibetan Plateau. Int. J. Climatol, 38, 1560–1570, DOI:  https://doi.org/10.1002/joc.5281.CrossRefGoogle Scholar
  29. Li, J., Y. Q. Li, X. W. Jiang, et al., 2016: Characteristics of land-atmosphere energy exchanges over complex terrain area of southeastern Tibetan Plateau under different synoptic conditions. Chinese J. Atmos. Sci., 40, 777–791, DOI:  https://doi.org/10.3878/j.issn.1006-9895.1509.15197. (in Chinese)Google Scholar
  30. Li, J. X., Q. Bao, Y. M. Liu, et al., 2017: Evaluation of the computational performance of the finite-volume atmospheric model of the IAP/LASG (FAMIL) on a high-performance computer. Atmos. Ocean. Sci. Lett., 10, 329–336, DOI:  https://doi.org/10.1080/16742834.2017.1331111.CrossRefGoogle Scholar
  31. Li, L., R. H. Zhang, M. Wen, et al., 2014: Effect of the atmospheric heat source on the development and eastward movement of the Tibetan Plateau vortices. Tellus A, 66, 24451, DOI:  https://doi.org/10.3402/tellusa.v66.24451.CrossRefGoogle Scholar
  32. Li, R. Q., S. H. Lyu, B. Han, et al., 2012: Preliminary comparison and analyses of air temperature at 2-m height between three reanalysis datasets and observation in the east of Qinghai-Xiang Plateau. Plateau Meteor., 31, 1488–1502. (in Chinese)Google Scholar
  33. Li, X. Z., X. Z. Tang, S. H. Li, et al., 2018: Impact of the spring sensible heat flux over the Tibetan Plateau on summer rainfall over East China and its role in rainfall prediction. Acta Meteor. Sinica, 76, 930–943, DOI:  https://doi.org/10.11676/qxxb2018.061. (in Chinese)Google Scholar
  34. Li, Y. Q., and X. D. Xu, 2016: A review of the research and observing experiment on Southwest China vortex. Adv. Meteor. Sci. Technol., 6, 134–140. (in Chinese)CrossRefGoogle Scholar
  35. Liu, G., P. Zhao, J. M. Chen, et al., 2015: Preceding factors of summer Asian-Pacific Oscillation and the physical mechanism for their potential influences. J. Climate, 28, 2531–2543, DOI:  https://doi.org/10.1175/JCLI-D-14-00327.1.CrossRefGoogle Scholar
  36. Liu, G., P. Zhao, and J. M. Chen, 2017: Possible effect of the thermal condition of the Tibetan Plateau on the interannual variability of the summer Asian-Pacific Oscillation. J. Climate, 30, 9965–9977, DOI:  https://doi.org/10.1175/JCLI-D-17-0079.1.CrossRefGoogle Scholar
  37. Liu, L. P., J. F. Zheng, Z. Ruan, et al., 2015: Comprehensive radar observations of clouds and precipitation over the Tibetan Plateau and preliminary analysis of cloud properties. J. Meteor. Res., 29, 546–561, DOI:  https://doi.org/10.1007/sl3351-015-4208-6.CrossRefGoogle Scholar
  38. Liu, Y. M., B. Hoskins, and M. Blackburn, 2007: Impact of Tibetan orography and heating on the summer flow over Asia. J. Meteor. Soc. Japan Ser. II, 85B, 1–19, DOI:  https://doi.org/10.2151/jmsj.85.1.CrossRefGoogle Scholar
  39. Liu, Y. M., G. X. Wu, J. L. Hong, et al., 2012: Revisiting Asian monsoon formation and change associated with Tibetan Plateau forcing: II. Change. Climate Dyn., 39, 1183–1195, DOI:  https://doi.org/10.1007/s00382-012-1335-y.CrossRefGoogle Scholar
  40. Liu, Y. M., Z. Q. Wang, H. F. Zhuo, et al., 2017: Two types of summertime heating over Asian large-scale orography and excitation of potential-vorticity forcing II. Sensible heating over Tibetan-Iranian Plateau. Sci. China Earth Sci., 60, 733–744, DOI:  https://doi.org/10.1007/s11430-016-9016-3.CrossRefGoogle Scholar
  41. Luo, H. B., and M. Yanai, 1984: The large-scale circulation and heat sources over the Tibetan Plateau and surrounding areas during the early summer of 1979. Part II: Heat and moisture budgets. Mon. Wea. Rev., 112, 966–989, DOI:  https://doi.org/10.1175/1520-0493(1984)112<0966:TLSCAH>2.0.CO;2.CrossRefGoogle Scholar
  42. Luo, Y. L., R. H. Zhang, W. M. Qian, et al., 2011: Intercomparison of deep convection over the Tibetan Plateau-Asian monsoon region and subtropical North America in boreal summer using CloudSat/CALIPSO data. J. Climate, 24, 2164–2177, DOI:  https://doi.org/10.1175/2010JCLI4032.1.CrossRefGoogle Scholar
  43. Ma, T. T., G. X. Wu, Y. M. Liu, et al., 2019: Impact of surface potential vorticity density forcing over the Tibetan Plateau on the South China extreme precipitation in January 2008. Part I: Data analysis. J. Meteor. Res., 33, 400–415, DOI:  https://doi.org/10.1007/S13351-019-8604-1.Google Scholar
  44. Ma, Y. M., T. D. Yao, and J. M. Wang, 2006: Experimental study of energy and water cycle in Tibetan Plateau—The progress on the study of GAME/Tibet and CAMP/Tibet. Plateau Meteor., 25, 344–351, DOI:  https://doi.org/10.3321/j.issn:1000-0534.2006.02.023. (in Chinese)Google Scholar
  45. Ma, Y. M., S. C. Kang, L. P. Zhu, et al., 2008: Tibetan observation and research platform (TORP): Atmosphere-land interaction over a heterogeneous landscape. Bull. Amer. Meteor. Soc., 89, 1487–1492, DOI:  https://doi.org/10.1175/1520-0477-89.10.1469.CrossRefGoogle Scholar
  46. Nan, S. L., P. Zhao, S. Yang, et al., 2009: Springtime tropospheric temperature over the Tibetan Plateau and evolutions of the tropical Pacific SST. J. Geophys. Res. Atmos., 114, D10104, DOI:  https://doi.org/10.1029/2008JD011559.CrossRefGoogle Scholar
  47. Nan, S. L., P. Zhao, and J. M. Chen, 2019: Variability of summertime Tibetan tropospheric temperature and associated precipitation anomalies over the central-eastern Sahel. Climate Dyn., 52, 1819–1835, DOI:  https://doi.org/10.1007/s00382-018-4246-8.CrossRefGoogle Scholar
  48. Pan, Y., J. X. Gu, J. J. Yu, et al., 2018: Test of merging methods for multi-source observed precipitation products at high resolution over China. Acta Meteor. Sinica, 76, 755–766, DOI:  https://doi.org/10.11676/qxxb2018.034. (in Chinese)Google Scholar
  49. Qiu, G. Q., H. Li, Y. Zhang, et al., 2013: Applicability research of planetary boundary layer parameterization scheme in WRF model over the Alpine Grassland Area. Plateau Meteor., 32, 46–55. (in Chinese)Google Scholar
  50. Su, Z., P. de Rosnay, J. Wen, et al., 2013: Evaluation of ECMWF’s soil moisture analyses using observations on the Tibetan Plateau. J. Geophys. Res. Atmos., 118, 5304–5318, DOI:  https://doi.org/10.1002/jgrd.50468.CrossRefGoogle Scholar
  51. Tang, J., X. L. Guo, and Y. Chang, 2018: Cloud microphysics and regional water budget of a summer precipitation process at Naqu over the Tibetan Plateau. Chinese J. Atmos. Sci., 42, 1327–1343, DOI:  https://doi.org/10.3878/j.issn.1006-9895.1801.17202. (in Chinese)Google Scholar
  52. Tang, J., X. L. Guo, and Y. Chang, 2019: A numerical investigation on microphysical properties of clouds and precipitation over the Tibetan Plateau in summer 2014. J. Meteor. Res., 33, 463–477, DOI:  https://doi.org/10.1007/s13351-019-8614-z.Google Scholar
  53. Tao, S. Y., S. W. Luo, and H. C. Zhang, 1986: The Qinghai-Xizang Plateau meteorological experiment (QXPMEX) in May–August 1979. Proc. International Symposium on the Qinghai-Xizang Plateau and Mountain Meteorology, American Meteorological Society, Boston, MA, 3–13, DOI:  https://doi.org/10.1007/978-1-935704-19-5_1.CrossRefGoogle Scholar
  54. Vernier, J. P., T. D. Fairlie, M. Natarajan, et al., 2015: Increase in upper tropospheric and lower stratospheric aerosol levels and its potential connection with Asian pollution. J. Geophys. Res. Atmos., 120, 1608–1619, DOI:  https://doi.org/10.1002/2014JD022372.CrossRefGoogle Scholar
  55. Wan, L. F., D. Guo, R. Q. Liu, et al., 2017: Evaluation of WACCM3 performance in simulation of the double-core ozone valley over the Qinghai-Xizang in summer. Plateau Meteor., 36, 57–66. (in Chinese)Google Scholar
  56. Wang, J. M., 1999: Land surface process experiments and interaction study in China—From HEIFE to IMGRASS and GAME-Tibet/TIPEX. Plateau Meteor., 18, 280–294, DOI:  https://doi.org/10.3321/j.issn:1000-0534.1999.03.005. (in Chinese)Google Scholar
  57. Wang, Y. J., X. D. Xu, H. Z. Liu, et al., 2016: Analysis of land surface parameters and turbulence characteristics over the Tibetan Plateau and surrounding region. J. Geophys. Res. Atmos., 121, 9540–9560, DOI:  https://doi.org/10.1002/2016JD025401.CrossRefGoogle Scholar
  58. Wu, C. Q., and T. J. Zhou, 2011: Characteristics of cloud radiative forcings over East Asia as simulated by the AGCMs in the CFMIP. Acta Meteor. Sinica, 69, 381–399, DOI:  https://doi.org/10.11676/qxxb2011.033. (in Chinese)Google Scholar
  59. Wu, G. X., and Y. S. Zhang, 1998: Tibetan Plateau forcing and the timing of the monsoon onset over South Asia and the South China Sea. Mon. Wea. Rev., 126, 913–927, DOI:  https://doi.org/10.1175/1520-0493(1998)126<0913:TPFATT>2.0.CO;2.CrossRefGoogle Scholar
  60. Wu, G. X., Y. M. Liu, Q. Zhang, et al., 2007: The influence of mechanical and thermal forcing by the Tibetan Plateau on Asian climate. J. Hydrometeorol., 8, 770–789, DOI:  https://doi.org/10.1175/JHM609.1.CrossRefGoogle Scholar
  61. Wu, G. X., Y. M. Liu, X. Zhu, et al., 2009: Multi-scale forcing and the formation of subtropical desert and monsoon. Ann. Geophys., 27, 3631–3644, DOI:  https://doi.org/10.5194/angeo-27-3631-2009.CrossRefGoogle Scholar
  62. Wu, G. X., Y. M. Liu, B. He, et al., 2012: Thermal controls on the Asian summer monsoon. Sci. Rep., 2, 404, DOI:  https://doi.org/10.1038/srep00404.CrossRefGoogle Scholar
  63. Wu, G. X., H. F. Zhuo, Z. Q. Wang, et al., 2016: Two types of summertime heating over the Asian large-scale orography and excitation of potential-vorticity forcing I. Over Tibetan Plateau. Sci. China Earth Sci., 59, 1996–2008, DOI:  https://doi.org/10.1007/s11430-016-5328-2.CrossRefGoogle Scholar
  64. Xu, A. L., J. Li, H. Peng, et al., 2017: Comparison of sensible and latent heat fluxes over farmland underlying surface of Erhai lakeside region measured from large aperture scintillometer and eddy-covariance system. Plateau Meteor., 36, 98–106. (in Chinese)Google Scholar
  65. Xu, L. J., H. Z. Liu, X. D. Xu, et al., 2018: Evaluation of the WRF model in simulating atmospheric boundary layer over Nagqu area in the Tibetan Plateau. Acta Meteor. Sinica, 76, 955–967, DOI:  https://doi.org/10.11676/qxxb2018.059. (in Chinese)Google Scholar
  66. Xu, X. D., C. G. Lu, X. H. Shi, et al., 2008a: World water tower: An atmospheric perspective. Geophys. Res. Lett., 35, L20815, DOI:  https://doi.org/10.1029/2008GL035867.CrossRefGoogle Scholar
  67. Xu, X. D., R. H. Zhang, T. Koike, et al., 2008b: A new integrated observational system over the Tibetan Plateau. Bull. Amer. Meteor. Soc., 89, 1492–1496, DOI:  https://doi.org/10.1175/2008BAMS2557.1.CrossRefGoogle Scholar
  68. Xu, X. D., T. L. Zhao, C. G. Lu, et al., 2014: An important mechanism sustaining the atmospheric “water tower” over the Tibetan Plateau. Atmos. Chem. Phys., 14, 11287–11295, DOI:  https://doi.org/10.5194/acp-14-11287-2014.CrossRefGoogle Scholar
  69. Xu, X. D., Y. J. Wang, T. L. Zhao, et al., 2015: “Harbor” effect of large topography on haze distribution in eastern China and its climate modulation on decadal variations of haze in China. Chinese Sci. Bull., 60, 1132–1143, DOI:  https://doi.org/10.1360/N97201400101. (in Chinese)CrossRefGoogle Scholar
  70. Xu, X. D., T. L. Zhao, F. Liu, et al., 2016: Climate modulation of the Tibetan Plateau on haze in China. Atmos. Chem. Phys., 16, 1365–1375, DOI:  https://doi.org/10.5194/acp-16-1365-2016.CrossRefGoogle Scholar
  71. Yan, X. L., J. S. Wright, X. D. Zheng, et al., 2016: Validation of Aura MLS retrievals of temperature, water vapour and ozone in the upper troposphere and lower-middle stratosphere over the Tibetan Plateau during boreal summer. Atmos. Meas. Tech., 9, 3547–3566, DOI:  https://doi.org/10.5194/amt-9-3547-2016.CrossRefGoogle Scholar
  72. Yan, Y. F., Y. M. Liu, and J. H. Lu, 2016: Cloud vertical structure, precipitation, and cloud radiative effects over Tibetan Plateau and its neighboring regions. J. Geophys. Res. Atmos., 121, 5864–5877, DOI:  https://doi.org/10.1002/2015JD024591.CrossRefGoogle Scholar
  73. Yan, Y. F., X. C. Wang, and Y. M. Liu, 2018: Cloud vertical structures associated with precipitation magnitudes over the Tibetan Plateau and its neighboring regions. Atmos. Ocean. Sci. Lett., 11, 44–53, DOI:  https://doi.org/10.1080/16742834.2018.1395680.CrossRefGoogle Scholar
  74. Yanai, M., C. F. Li, and Z. S. Song, 1992: Seasonal heating of the Tibetan Plateau and its effects on the evolution of the Asian summer monsoon. J. Meteor. Soc. Japan Ser. II, 70, 319–351, DOI:  https://doi.org/10.2151/jmsjl965.70.1B_319.CrossRefGoogle Scholar
  75. Yang, K., and X. F. Guo, 2011: On the climatology and trend of the atmospheric heat source over the Tibetan Plateau: An experiments-supported revisit. J. Climate, 24, 1525–1541, DOI:  https://doi.org/10.1175/2010JCLI3848.1.CrossRefGoogle Scholar
  76. Yang, S. N., F. H. Zhang, J. Xu, et al., 2016: Mesoscale convective systems and characteristics of environment field during a heavy rainfall process in Sichuan basin. Plateau Meteor., 35, 1476–1486. (in Chinese)Google Scholar
  77. Yang, Y., and R. C. Ren, 2017: On the contrasting decadal changes of diurnal surface temperature range between the Tibetan Plateau and southeastern China during the 1980s-2000s. Adv. Atmos. Sci., 34, 181–198, DOI:  https://doi.org/10.1007/s00376-016-6077-z.CrossRefGoogle Scholar
  78. Yao, J. C., T. J. Zhou, Z. Guo, et al., 2017: Improved performance of high-resolution atmospheric models in simulating the East Asian summer monsoon rain belt. J. Climate, 30, 8825–8840, DOI:  https://doi.org/10.1175/JCLI-D-16-0372.1.CrossRefGoogle Scholar
  79. Ye, D. Z., and Y. X. Gao, 1979: Meteorology of the Qinghai-Xizang Plateau. Science Press, Beijing, 278 pp. (in Chinese)Google Scholar
  80. Yu, W., Y. M. Liu, X. Q. Yang, et al., 2018: The interannual and decadal variation characteristics of the surface sensible heating at different elevations over the Qinghai-Tibetan Plateau and attribution analysis. Plateau Meteor., 37, 1161–1176. (in Chinese)Google Scholar
  81. Yue, Z. G., X. Yu, G. H. Liu, et al., 2019: Microphysical properties of convective clouds in summer over the Tibetan Plateau from SNPP/VIIRS satellite data. J. Meteor. Res., 33, 433–445, DOI:  https://doi.org/10.1007/sl3351-019-8608-x.Google Scholar
  82. Zeng, Y. J., Z. B. Su, R. van der Velde, et al., 2016: Blending satellite observed, model simulated, and in situ measured soil moisture over Tibetan Plateau. Remote Sens., 8, 268, DOI:  https://doi.org/10.3390/rs8030268.CrossRefGoogle Scholar
  83. Zhang, G., F. Chen, and Y. J. Gao, 2016: Assessing uncertainties in the Noah-MP ensemble simulations of a cropland site during the Tibet Joint International Cooperation program field campaign. J. Geophys. Res. Atmos., 121, 9576–9596, DOI:  https://doi.org/10.1002/2016JD024928.CrossRefGoogle Scholar
  84. Zhang, R. H., T. Koike, X. D. Xu, et al., 2012: A China-Japan cooperative JICA atmospheric observing network over the Tibetan Plateau (JICA/Tibet Project): An overview. J. Meteor. Soc. Japan Ser. II, 90C, 1–16, DOI:  https://doi.org/10.2151/jmsj.2012-C01.CrossRefGoogle Scholar
  85. Zhao, P., and L. X. Chen, 2000: Study on climatic features of surface turbulent heat exchange coefficients and surface thermal sources over the Qinghai-Xizang Plateau. Acta Meteor. Sinica, 14, 13–29.Google Scholar
  86. Zhao, P., and L. X. Chen, 2001a: Climatic features of atmospheric heat source/sink over the Qinghai-Xizang Plateau in 35 years and its relation to rainfall in China. Sci China Earth Sci., 44, 858–864, DOI:  https://doi.org/10.1007/BF02907098.CrossRefGoogle Scholar
  87. Zhao, P., and L. X. Chen, 2001b: Role of atmospheric heat source/sink over the Qinghai-Xizang Plateau in quasi-4-year oscillation of atmosphere-land-ocean interaction. Chinese Sci. Bull., 46, 241–245, DOI:  https://doi.org/10.1007/BF03187178.CrossRefGoogle Scholar
  88. Zhao, P., and Y. Yuan, 2017: Characteristics of a plateau vortex precipitation event on 14 July 2014. J. Appl. Meteor. Sci., 28, 532–543, DOI:  https://doi.org/10.11898/1001-7313.20170502. (in Chinese)Google Scholar
  89. Zhao, P., Z. J. Zhou, and J. P. Liu, 2007: Variability of Tibetan spring snow and its associations with the hemispheric extratropical circulation and East Asian summer monsoon rainfall: An observational investigation. J. Climate, 20, 3942–3955, DOI:  https://doi.org/10.1175/JCLI4205.1.CrossRefGoogle Scholar
  90. Zhao, P., X. D. Zhang, Y. F. Li, et al., 2009: Remotely modulated tropical-North Pacific ocean-atmosphere interactions by the South Asian high. Atmos. Res., 94, 45–60, DOI:  https://doi.org/10.1016/j.atmosres.2009.01.018.CrossRefGoogle Scholar
  91. Zhao, P., X. D. Xu, F. Chen, et al., 2018: The Third Atmospheric Scientific Experiment for understanding the earth-atmosphere coupled system over the Tibetan Plateau and its effects. Bull. Amer. Meteor. Soc., 99, 757–776, DOI:  https://doi.org/10.1175/BAMS-D-16-0050.1.CrossRefGoogle Scholar
  92. Zhao, P., X. J. Zhou, J. M. Chen, et al., 2019: Global climate effects of summer Tibetan Plateau. Sci. Bull., 64, 1–3, DOI:  https://doi.org/10.1016/J.scib.2018.11.019.CrossRefGoogle Scholar
  93. Zheng, X. D., X. J. Zhou, J. Tang, et al., 2004: A meteorological analysis on a low tropospheric ozone event over Xining, northwestern China on 26–27 July 1996. Atmos. Environ., 38, 261–271, DOI:  https://doi.org/10.1016/j.atmosenv.2003.09.063.CrossRefGoogle Scholar
  94. Zhong, L. Z., R. Mu, D. L. Zhang, et al., 2015: An observational analysis of warm-sector rainfall characteristics associated with the 21 July 2012 Beijing extreme rainfall event. J. Geophys. Res. Atmos., 120, 3274–3291, DOI:  https://doi.org/10.1002/2014JD022686.CrossRefGoogle Scholar
  95. Zhou, X. J., C. Luo, W. L. Li, et al., 1995: Variations of total ozone amount in China and the ozone low center over Tibetan Plateau. Chinese Sci. Bull., 40, 1396–1398. (in Chinese)Google Scholar
  96. Zhou, X. J., W. L. Li, L. X. Chen, et al., 2004: Study of ozone change over Tibetan Plateau. Acta Meteor. Sinica, 62, 513–527, DOI:  https://doi.org/10.11676/qxxb2004.053. (in Chinese)Google Scholar
  97. Zhou, X. J., P. Zhao, J. M. Chen, et al., 2009: Impacts of thermodynamic processes over the Tibetan Plateau on the Northern Hemispheric climate. Sci. China Earth Sci., 52, 1679–1693, DOI:  https://doi.org/10.1007/s11430-009-0194-9.CrossRefGoogle Scholar
  98. Zhu, B., X. W. Hou, and H. Q. Kang, 2016: Analysis of the seasonal ozone budget and the impact of the summer monsoon on the northeastern Qinghai-Tibetan Plateau. J. Geophys. Res. Atmos., 121, 2029–2042, DOI:  https://doi.org/10.1002/2015JD023857.CrossRefGoogle Scholar
  99. Zhu, X. Y., Y. M. Liu, and G. X. Wu, 2012: An assessment of summer sensible heat flux on the Tibetan Plateau from eight data sets. Sci. China Earth Sci., 55, 779–786, DOI:  https://doi.org/10.1007/s11430-012-4379-2.CrossRefGoogle Scholar
  100. Zhuo, H. F., Y. M. Liu, and J. M. Jin, 2016: Improvement of land surface temperature simulation over the Tibetan Plateau and the associated impact on circulation in East Asia. Atmos. Sci. Lett., 17, 162–168, DOI:  https://doi.org/10.1002/asl.638.CrossRefGoogle Scholar

Copyright information

© The Chinese Meteorological Society and Springer-Verlag Berlin Heidelberg 2019

Authors and Affiliations

  • Ping Zhao
    • 1
    Email author
  • Yueqing Li
    • 2
  • Xueliang Guo
    • 1
  • Xiangde Xu
    • 1
  • Yimin Liu
    • 3
  • Shihao Tang
    • 4
  • Wenming Xiao
    • 5
  • Chunxiang Shi
    • 5
  • Yaoming Ma
    • 6
  • Xing Yu
    • 7
  • Huizhi Liu
    • 3
  • La Jia
    • 8
  • Yun Chen
    • 9
  • Yanju Liu
    • 10
  • Jian Li
    • 1
  • Dabiao Luo
    • 8
  • Yunchang Cao
    • 11
  • Xiangdong Zheng
    • 1
  • Junming Chen
    • 1
  • An Xiao
    • 12
  • Fang Yuan
    • 5
  • Donghui Chen
    • 5
  • Yang Pang
    • 5
  • Zhiqun Hu
    • 1
  • Shengjun Zhang
    • 1
  • Lixin Dong
    • 4
  • Juyang Hu
    • 4
  • Shuai Han
    • 5
  • Xiuji Zhou
    • 1
  1. 1.State Key Laboratory of Severe WeatherChinese Academy of Meteorological Sciences, China Meteorological AdministrationBeijingChina
  2. 2.Chengdu Institute of Plateau Meteorology of the China Meteorological AdministrationChengduChina
  3. 3.Institute of Atmospheric PhysicsChinese Academy of SciencesBeijingChina
  4. 4.National Satellite Meteorological CenterChina Meteorological AdministrationBeijingChina
  5. 5.National Meteorological Information CenterChina Meteorological AdministrationBeijingChina
  6. 6.Institute of Tibetan Plateau ResearchChinese Academy of SciencesBeijingChina
  7. 7.Meteorological Institute of Shaanxi ProvinceXi’anChina
  8. 8.Meteorological Observatory of Tibet Autonomous RegionLhasaChina
  9. 9.National Meteorological CenterChina Meteorological AdministrationBeijingChina
  10. 10.National Climate CenterChina Meteorological AdministrationBeijingChina
  11. 11.Meteorological Observation CenterChina Meteorological AdministrationBeijingChina
  12. 12.Jiangxi Meteorological ObservatoryNanchangChina

Personalised recommendations