Advertisement

Journal of Meteorological Research

, Volume 33, Issue 4, pp 695–704 | Cite as

Verification of Fengyun-3D MWTS and MWHS Calibration Accuracy Using GPS Radio Occultation Data

  • Xueyan Hou
  • Yang Han
  • Xiuqing Hu
  • Fuzhong WengEmail author
Regular Article
  • 2 Downloads

Abstract

The newly launched Fengyun-3D (FY-3D) satellite carries microwave temperature sounder (MWTS) and microwave humidity sounder (MWHS), providing the global atmospheric temperature and humidity measurements. It is important to assess the in orbit performance of MWTS and MWHS and understand their calibration accuracy before using them in numerical weather prediction and many other applications such as hurricane monitoring. This study aims at quantifying the biases of MWTS and MWHS observations relative to the simulations from the collocated Global Positioning System (GPS) radio occultation (RO) data. Using the collocated FY-3C Global Navigation Satellite System Occultation Sounder (GNOS) RO data under clear-sky conditions as inputs to Community Radiative Transfer Model (CRTM), brightness temperatures and viewing angles are simulated for the upper level sounding channels of MWTS and MWHS. In order to obtain OB statistics under clear sky conditions, a cloud detection algorithm is developed by using the two MWTS channels with frequencies at 50.3 and 51.76 GHz and the two MWHS channels with frequencies centered at 89 and 150 GHz. The analysis shows that for the upper air sounding channels, the mean biases of the MWTS observations relative to the GPS RO simulations are negative for channels 5–9, with absolute values < 1 K, and positive for channels 4 and 10, with values < 0.5 K. For the MWHS observations, the mean biases in brightness temperature are negative for channels 2–6, with absolute values < 2.6 K and relatively small standard deviations. The mean biases are also negative for channels 11–13, with absolute values < 1.3 K, but with relatively large standard deviations. The biases of both MWTS and MWHS show scan-angle dependence and are asymmetrical across the scan line. The biases for the upper air MWTS and MWHS sounding channels are larger than those previously derived for the Advanced Technology Microwave Sounder.

Key words

satellites Fengyun satellites microwave sounding cross-calibration radio occultation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Blackwell, W. J., R. Bishop, K. Cahoy, et al., 2014: Radiometer calibration using colocated GPS radio occultation measurements. IEEE Trans. Geosci. Remote Sens., 52, 6423–6433, doi:  https://doi.org/10.1109/TGRS.2013.2296558.CrossRefGoogle Scholar
  2. Feltz, M., R. Knuteson, S. Ackerman, et al., 2014a: Application of GPS radio occultation to the assessment of temperature profile retrievals from microwave and infrared sounders. Atmos. Meas. Tech., 7, 3751–3762, doi:  https://doi.org/10.5194/amt-7-3751-2014.CrossRefGoogle Scholar
  3. Feltz, M. L., R. O. Knuteson, H. E. Revercomb, et al., 2014b: A methodology for the validation of temperature profiles from hyperspectral infrared sounders using GPS radio occultation: Experience with AIRS and COSMIC. J. Geophys. Res. Atmos., 119, 1680–1691, doi:  https://doi.org/10.1002/2013JD020853.CrossRefGoogle Scholar
  4. Han, Y., X. L. Zou, and F. Z. Weng, 2015: Cloud and precipitation features of Super Typhoon Neoguri revealed from dual oxygen absorption band sounding instruments on board FengYun-3C satellite. Geophys. Res. Lett., 42, 916–924, doi:  https://doi.org/10.1002/2014gl062753.CrossRefGoogle Scholar
  5. Liao, M., P. Zhang, Y. M. Bi, et al., 2015: A preliminary estimation of the radio occultation products accuracy from the Fengyun-3C meteorological satellite. Acta Meteor. Sinica, 73, 1131–1140, doi:  https://doi.org/10.11676/qxxb2015.072. (in Chinese)Google Scholar
  6. Liao, M., P. Zhang, G. L. Yang, et al., 2016: Status of radio occultation sounding technology of FY-3C GNOS. Adv. Meteor. Sci. Technol., 6, 83–87, doi:  https://doi.org/10.3969/jissn.2095-1973.2016.01.012. (in Chinese)Google Scholar
  7. Liu, Q. H., P. Van Delst, Y. Chen, et al., 2012: Community radiative transfer model for radiance assimilation and applications. Proc. IEEE IGARSS, 3700–3703, doi: 10.1199HGARSS.2012.6350612.Google Scholar
  8. Moradi, I., R. R. Ferraro, P. Eriksson, et al., 2015: Intercalibration and validation of observations from ATMS and SAPHIR microwave sounders. IEEE Trans. Geosci. Remote Sens., 53, 5915–5925, doi:  https://doi.org/10.1109/TGRS.2015.2427165.CrossRefGoogle Scholar
  9. Qin, Z. K., and X. L. Zou, 2016: Uncertainty in Fengyun-3C microwave humidity sounder measurements at 118 GHz with respect to simulations from GPS RO data. IEEE Trans. Geosci. Remote Sens., 44, 6907–6918, doi:  https://doi.org/10.1199/TGR0.0010.2587878.CrossRefGoogle Scholar
  10. Tang, Y. Q., J. S. Zhang, and J. S. Wang, 2014: FY-3 meteorological satellites and the applications. Chinese J. Space Sci., 34, 703–709, doi:  https://doi.org/10.11728/cjss2014.05.703.Google Scholar
  11. Tradowsky, J. S., C. P. Burrows, S. B. Healy, et al., 2017: A new method to correct radiosonde temperature biases using radio occultation data. J. Appl. Meteor. Climatol., 56, 1643–1661, doi:  https://doi.org/10.1175/JAMC-D-16-0136.1.CrossRefGoogle Scholar
  12. Weng, F. Z., 2007: Advances in radiative transfer modeling in support of satellite data assimilation. J. Atmos. Sci., 64, 3799–3807, doi:  https://doi.org/10.1175/2007JAS2112.1.CrossRefGoogle Scholar
  13. Weng, F. Z., and N. C. Grody, 2000: Retrieval of ice cloud parameters using a microwave imaging radiometer. J. Atmos. Sci., 57, 1069–1081, doi:  https://doi.org/10.1175/1520-0469(2000)057<1069:ROICPU>2.0.CO;2.CrossRefGoogle Scholar
  14. Weng, F. Z., L. M. Zhao, R. R. Ferraro, et al., 2003: Advanced microwave sounding unit cloud and precipitation algorithms. Radio Sci., 38, 8068–8096, doi:  https://doi.org/10.1029/2002rs002679.CrossRefGoogle Scholar
  15. Weng, F. Z., X. L. Zou, N. H. Sun, et al., 2013: Calibration of Suomi national polar-orbiting partnership advanced technology microwave sounder. J. Geophys. Res. Atmos., 118, 11187–11200, doi:  https://doi.org/10.1002/jgrd.50840.CrossRefGoogle Scholar
  16. Zou, X. L., L. Lin, and F. Z. Weng, 2014: Absolute calibration of ATMS upper level temperature sounding channels using GPS RO observations. IEEE Trans. Geosci. Remote Sens., 52, 1397–1406, doi:  https://doi.org/10.1109/TGRS.2013.2250981.CrossRefGoogle Scholar

Copyright information

© The Chinese Meteorological Society and Springer-Verlag Berlin Heidelberg 2019

Authors and Affiliations

  • Xueyan Hou
    • 1
  • Yang Han
    • 2
  • Xiuqing Hu
    • 3
  • Fuzhong Weng
    • 1
    Email author
  1. 1.State Key Laboratory of Severe WeatherChinese Academy of Meteorological Sciences, China Meteorological AdministrationBeijingChina
  2. 2.Nanjing University of Information Science & TechnologyNanjingChina
  3. 3.National Satellite Meteorological CenterChina Meteorological AdministrationBeijingChina

Personalised recommendations