Advertisement

Journal of Meteorological Research

, Volume 33, Issue 4, pp 734–746 | Cite as

Simulation Study of Cloud Properties Affected by Heterogeneous Nucleation Using the GRAPES_SCM during the TWP-ICE Campaign

  • Zhe LiEmail author
  • Qijun Liu
  • Zhanshan Ma
  • Jiong Chen
  • Qingu Jiang
Regular Atricle
  • 4 Downloads

Abstract

This study used the Global/Regional Assimilation and PrEdiction System Single-Column Model (GRAPES_SCM) to simulate monsoon precipitation with deep convective cloud and associated cirrus during the Tropical Warm Pool International Cloud Experiment (TWP-ICE), especially during the active and suppressed monsoon periods. Four cases with different heterogeneous nucleation parameterizations were simulated by using the ensemble method. All simulations clearly separated the active and suppressed monsoon periods, and they reproduced the major characteristics of monsoonal cloud such as the total cloud hydrometeor mixing ratio distribution, and precipitation and radiation properties. The results showed that the number concentration production rate of different heterogeneous nucleation parameterizations varied substantially under the given temperature and water vapor mixing ratio. However, ice formation and precipitation during the monsoon period were affected only slightly by the different heterogeneous nucleation parameterizations. This study also captured clear competition between different ice formation processes.

Key words

Liuma microphysics scheme monsoon precipitation cloud microphysics heterogeneous nucleation GRAPES_SCM 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

We thank James Buxton MSc for editing the English text of this manuscript.

References

  1. Arakawa, A., and W. H. Schubert, 1974: Interaction of a cumulus cloud ensemble with the large-scale environment, Part I. J. Atmos. Sci., 31, 674–701, doi:  https://doi.org/10.1175/1520-0469%281974%29031<0674%3AIOACCE>2.0.CO%3B2.CrossRefGoogle Scholar
  2. Bi, K., X. C. Ma, Y. B. Chen, et al., 2018: The observation of ice-nucleating particles active at temperatures above -15°C and its implication on ice formation in clouds. J. Meteor. Res., 32, 734–743, doi:  https://doi.org/10.1007/s13351-018-7181-z.CrossRefGoogle Scholar
  3. Blackadar, A. K., 1978: Modeling pollutant transfer during daytime convection. Preprints from Fourth Symposium on Turbulence, Diffusion, and Air Quality, Amer. Meteor. Soc., Reno, NV, 443–447.Google Scholar
  4. Chen, D. H., J. S. Xue, X. S. Yang, et al., 2008: New generation of multi-scale NWP system (GRAPES): General scientific design. Chinese Sci. Bull., 53, 3433–3445, doi:  https://doi.org/10.1007/s11434-008-0494-z. (in Chinese)Google Scholar
  5. Cotton, W. R., G. J. Tripoli, R. M. Rauber, et al., 1986: Numerical simulation of the effects of varying ice crystal nucleation rates and aggregation processes on orographic snowfall. J. Climate Appl. Meteor., 25, 1658–1680, doi: 10.117511520-0450(1986)025<1658:NSOTEO>2.0.CO;2.CrossRefGoogle Scholar
  6. Cripe, D., 1998: Single-column modeling: Sensitivity to initial conditions and divergence forcing. Proceedings of the Seventh Atmospheric Radiation Measurement (ARM) Science Team Meeting, ARM, San Antonio, TX, 439–441. [Available on line at http://scholar.google.com/scholar?hl=en&qCripe %2C+D.%2C+1998%3A++Single-column+modeling%3A+Sensitivity+to+initial+conditions+and+divergence+forcing.+Proc.+Seventh+Atmopheric+Radiation+Measurement+%28ARM%29+Science+Team+Meeting%2C+San+Antonio%2C+TX%2C+ARM+Program%2C+439%E2%80%93441].Google Scholar
  7. Davies, L., 2009: TWP-ICE single column model case. [Available on line at http://users.monash.edu.au/~ladavies/SCM_TWP-ICEdoc.pdf].
  8. DeMott, P. J., K. Sassen, M. R. Poellot, et al., 2003: African dust aerosols as atmospheric ice nuclei. Geophys. Res. Lett., 30, 1732, doi:  https://doi.org/10.1029/2003GL017410.CrossRefGoogle Scholar
  9. Deng, X., H. W. Xue, and Z. Y. Meng, 2018: The effect of ice nuclei on a deep convective cloud in South China. Atmos. Res., 206, 1–12, doi:  https://doi.org/10.1016/j.atmosres.2018.02.013.CrossRefGoogle Scholar
  10. Diehl, K., and S. K. Mitra, 2015: New particle-dependent parameterizations of heterogeneous freezing processes: Sensitivity studies of convective clouds with an air parcel model. Atmos. Chem. Phys., 15, 12741–12763, doi:  https://doi.org/10.5194/acp-15-12741-2015.CrossRefGoogle Scholar
  11. Du, C. H., T. van der Sar, T. X. Zhou, et al., 2017: Control and local measurement of the spin chemical potential in a magnetic insulator. Science, 357, 195–198, doi:  https://doi.org/10.1126/science.aak9611.CrossRefGoogle Scholar
  12. Ekman, A. M. L., A. Engström, and C. Wang, 2007: The effect of aerosol composition and concentration on the development and anvil properties of a continental deep convective cloud. Quart. J. Roy.Meteor. Soc., 133, 1439–1452, doi:  https://doi.org/10.1002/qj.108.Google Scholar
  13. Fan, J. W., T. L. Yuan, J. M. Comstock, et al., 2009: Dominant role by vertical wind shear in regulating aerosol effects on deep convective clouds. J. Geophys. Res. Atmos., 114, D22206, doi:  https://doi.org/10.1029/2009JD012352.CrossRefGoogle Scholar
  14. Fridlind, A., A. Ackerman, J. Petch, et al., 2010: ARM/GCSS/SPARC TWP-ICE CRM intercomparison study. NASA-TM-2010-215858, National Aeronautics and Space Administration, Greenbelt. [Available online at https://pubs.giss.nasa.gov/docs/2010/2010_Fridlind_fr08100v.pdf].
  15. Garrett, T. J., and C. F. Zhao, 2006: Increased Arctic cloud longwave emissivity associated with pollution from mid-latitudes. Nature, 110, 787–789, doi:  https://doi.org/10.1038/nature04636.CrossRefGoogle Scholar
  16. Gesso, S. D., and R. A. J. Neggers, 2018: Can we use single-column models for understanding the boundary layer cloud-climate feedback? J. Adv. Model. Earth Syst., 10, 245–261, doi:  https://doi.org/10.1002/2017MS001113.CrossRefGoogle Scholar
  17. Hack, J. J., and J. A. Pedretti, 2000: Assessment of solution uncertainties in single-column modeling frameworks. J. Climate, 13, 352–365, doi:  https://doi.org/10.1175/1520-0442(2000)013<352:AO-SUIS>2.0.CO;2.CrossRefGoogle Scholar
  18. Harrison, E. F., P. Minnis, B. R. Barkstrom, et al., 1990: Time dependence of the Earth’s radiation fields determined from ERBS and NOAA-9 satellites. Proceedings of SPIE Volume 1299, Long-Term Monitoring of the Earth’s Radiation Budget, SPIE, Orlando, FL, 222–230, doi:  https://doi.org/10.1117/12.21380.Google Scholar
  19. Hartmann, D. L., M. E. Ockert-Bell, and M. L. Michelsen, 1992: The effect of cloud type on Earth’s energy balance: Global analysis. J. Climate, 5, 1281–1304, doi:  https://doi.org/10.1175/1520-0442(1992)005<1157:TEOCTO>2.0.CO;2.CrossRefGoogle Scholar
  20. Hazra, A., B. Padmakumari, R. S. Maheskumar, et al., 2016: The effect of mineral dust and soot aerosols on ice microphysics near the foothills of the Himalayas: A numerical investigation. Atmos. Res., 171, 41–55, doi:  https://doi.org/10.1016/j.atmosres.2015.12.005.CrossRefGoogle Scholar
  21. Hiron, T., and A. I. Flossmann, 2015: A study of the role of the parameterization of heterogeneous ice nucleation for the modeling of microphysics and precipitation of a convective cloud. J. Atmos. Sci., 22, 3322–3339, doi:  https://doi.org/10.1125/JAS-D-15-0026.1.CrossRefGoogle Scholar
  22. Hoose, C., and O. Möhler, 2012: Heterogeneous ice nucleation on atmospheric aerosols: a review of results from laboratory experiments. Atmos. Chem. Phys., 12, 9817–9854, doi:  https://doi.org/10.5194/acp-12-9817-2012.CrossRefGoogle Scholar
  23. Hu, Z. J., and C. F. Yan, 1986: Numerical simulation of micro-physical processes in stratiform clouds (I)—Microphysical model. J. Acad. Meteor. Sci., 1, 37–52. (in Chinese)Google Scholar
  24. Hu, Z. J., and G. F. He, 1987: Numerical simulation of microprocesses in cumulonimbus clouds. (I): Microphysical model. Acta Meteor. Sinica, 45, 467–484, doi:  https://doi.org/10.11676/qxxb1987.060. (in Chinese)Google Scholar
  25. Jensen, E. J., O. B. Toon, L. Pfister, et al., 1996: Dehydration of the upper troposphere and lower stratosphere by subvisible cirrus clouds near the tropical tropopause. Geophys. Res. Lett., 23, 825–828, doi:  https://doi.org/10.1029/96GL00722.CrossRefGoogle Scholar
  26. Kennedy, A. D., X. Q. Dong, B. K. Xi, et al., 2010: Evaluation of the NASA GISS single-column model simulated clouds using combined surface and satellite observations. J. Climate, 23, 5175–5192, doi:  https://doi.org/10.1175/2010JCLI3353.1.CrossRefGoogle Scholar
  27. Lamb, D., and J. Verlinde, 2011: Physics and Chemistry of Clouds. Cambridge University Press, Cambridge, 584 pp.CrossRefGoogle Scholar
  28. Li, Z., H. W. Xue, and F. Yang, 2013: A modeling study of ice formation affected by aerosols. J. Geophys. Res. Atmos., 118, 11213–11227, doi:  https://doi.org/10.1002/jgrd.50861.CrossRefGoogle Scholar
  29. Li, Z., Y. T. Zhang, Q. J. Liu, et al., 2018: A study of the influence of microphysical processes on Typhoon Nida (2016) using a new double-moment microphysics scheme in the weather research and forecasting model. J. Trop. Meteor., 24, 123–130, doi:  https://doi.org/10.16555/j.1006-8775.2018.02.001.Google Scholar
  30. Li, Z., Z. S. Ma, Q. J. Liu, et al., 2019: The improvement of GRAPES double moment cloud scheme and case study of cloud precipitation. Part I: Modeling study of tropical convective cloud via GRAPES_SCM. Meteor. Mon., 45, 756–765, doi:  https://doi.org/10.7519/j.issn.1000-0526. (in Chinese)Google Scholar
  31. Liu, Q. J., Z. J. Hu, and X. J. Zhou, 2003: Explicit cloud schemes of HLAFS and simulation of heavy rainfall and clouds. Part II: Simulation of heavy rainfall and clouds. J. Appl. Meteor. Sci., 14, 68–77, doi:  https://doi.org/10.3969/j.issn.1001-7313.2003.z1.009. (in Chinese)Google Scholar
  32. Ma, Z. S., Q. J. Liu, C. F. Zhao, et al., 2018: Application and evaluation of an explicit prognostic cloud-cover scheme in GRAPES global forecast system. J. Adv. Model. Earth Syst., 10, 652–667, doi:  https://doi.org/10.1002/2017MS001234.CrossRefGoogle Scholar
  33. May, P. T., J. H. Mather, G. Vaughan, et al., 2008: FIELD RESEARCH: Characterizing oceanic convective cloud systems. Bull. Amer. Meteor. Soc., 89, 153–155, doi:  https://doi.org/10.1175/BAMS-89-2-153.CrossRefGoogle Scholar
  34. Mei, H. X., X. Y. Shen, and W. G. Wang, 2015: Evaluation and comparison of two double-moment bulk microphysics schemes using WRF single-column model. Plateau Meteor., 31, 890–909, doi:  https://doi.org/10.7522/j.sssn.1000-0534.2014.00113. (in Chinese)Google Scholar
  35. Meyers, M. P., P. J. DeMott, and W. R. Cotton, 1992: New primary ice-nucleation parameterizations in an explicit cloud model. J. Appl. Meteor., 31, 708–721, doi:  https://doi.org/10.1175/1520-0450(1992)031<0708:NPINPI>2.0.CO;2.CrossRefGoogle Scholar
  36. Mlawer, E. J., S. J. Taubman, P. D. Brown, et al., 1997: Radiative transfer for inhomogeneous atmospheres: TMRR, a validated correlated-k model for the longwave. J. Geophys. Res. Atmos., 102, 16663–16682, doi:  https://doi.org/10.1029/97JD00237.CrossRefGoogle Scholar
  37. Phillips, V. T. J., P. J. Demott, and C. Andronache, 2008: An empirical parameterization of heterogeneous ice nucleation for multiple chemical species of aerosol. J. Atmos. Sci., 65, 2757–2783, doi:  https://doi.org/10.1175/2007JAS2546.1.CrossRefGoogle Scholar
  38. Pruppacher, H. R., and J. D. Klett, 1997: Microphysics of Clouds and Precipitation. Kluwer Academic Press, Dordrecht, 954 pp.Google Scholar
  39. Ramage, C. S., 1971: Monsoon Meteorology. Academic Press, New York, 296 pp.Google Scholar
  40. Ramanathan, V., R. D. Cess, E. F. Harrison, et al., 1989: Cloud-radiative forcing and climate: Results from the earth radiation budget experiment. Science, 243, 57–63, doi: https://doi.org/10.1126/science.243.4887.57.CrossRefGoogle Scholar
  41. Reisner, J., R. M. Rasmussen, and R. T. Bruintjes, 1998: Explicit forecasting of supercooled liquid water in winter storms using the MM5 mesoscale model. Quart. J. Roy. Meteor. Soc., 124, 1071–1107, doi:  https://doi.org/10.1002/qj.49712454804.CrossRefGoogle Scholar
  42. Rossow, W. B., and R. A. Schiffer, 1991: ISCCP cloud data products. Bull. Amer. Meteor. Soc., 72, 2–20, doi:  https://doi.org/10.1175/1520-0477(1991)072<0002:ICDP>2.0.CO;2.CrossRefGoogle Scholar
  43. Shi, R. G., Q. J. Liu, and Z. S. Ma, 2015: Numerical simulation of aerosol effects on cloud and precipitation using GRAPES model. Meteor. Mon., 41, 272–285, doi:  https://doi.org/10.7519/j.issn.1000-0526.2015.03.002. (in Chinese)Google Scholar
  44. van den Heever, S. C., G. G. Carrió, W. R. Cotton, et al., 2006: Impacts of nucleating aerosol on florida storms. Part I: Mesoscale simulations. J. Atmos. Sci., 63, 1752–1775, doi:  https://doi.org/10.1175/JAS3713.1.CrossRefGoogle Scholar
  45. Varble, A., A. M. Fridlind, E. J. Zipser, et al., 2011: Evaluation of cloud-resolving model intercomparison simulations using TWP-ICE observations: Precipitation and cloud structure. J. Geophys. Res. Atmos., 116, D12206, doi:  https://doi.org/10.1029/2010JD015180.CrossRefGoogle Scholar
  46. Wang, D. L., G. Q. Xu, and L. H. Jia, 2013: The evaluation of cumulus parameterization schemes in GRAPES model and its improved experiments. Meteor. Mon., 39, 166–179, doi:  https://doi.org/10.7519/j.issn.1000-0526.2013.02.005. (in Chinese)Google Scholar
  47. Wapler, K., T. P. Lane, P. T. May, et al., 2010: Cloud-system-resolving model simulations of tropical cloud systems observed during the tropical warm pool-international cloud experiment. Mon. Wea. Rev., 138, 55–73, doi:  https://doi.org/10.1175/2009MWR2993.1.CrossRefGoogle Scholar
  48. Xie, S. C., T. Hume, C. Jakob, et al., 2010: Observed large-scale structures and diabatic heating and drying profiles during TWP-ICE. J. Climate, 23, 57–79, doi:  https://doi.org/10.1175/2009JCLI3071.1.CrossRefGoogle Scholar
  49. Xie, S. C., X. H. Liu, C. F. Zhao, et al., 2013: Sensitivity of CAM5-simulated arctic clouds and radiation to ice nucleation parameterization. J. Climate, 26, 5981–5999, doi:  https://doi.org/10.1175/JCLI-D-12-00517.1.CrossRefGoogle Scholar
  50. Xue, J. S., and D. H. Chen, 2008: Scientific Design and Application of Numerical Forecasting System GRAPES. Science Press, Beijing, 383 pp. (in Chinese)Google Scholar
  51. Yang, J. L., and X. S. Shen, 2011: The construction of SCM in GRAPES and its applications in two field experiment simulations. Adv. Atmos. Sci., 28, 534–550, doi:  https://doi.org/10.1007/s00376-010-0062-8.CrossRefGoogle Scholar
  52. Zhang, J. C., and Q. J. Liu, 2006: Analysis of cloud schemes in simulation of short-term climatic process. Meteor. Mon., 32, 3–12, doi:  https://doi.org/10.3969/j.issn.1000-0526.2006.07.001. (in Chinese)Google Scholar
  53. Zhao, C. F., and T. J. Garrett, 2015: Effects of Arctic haze on surface cloud radiative forcing. Geophys. Res. Lett., 42, 557–564, doi:  https://doi.org/10.1002/2014GL062015.CrossRefGoogle Scholar
  54. Zhao, C. F., Y. L. Lin, F. Wu, et al., 2018: Enlarging rainfall area of tropical cyclones by atmospheric aerosols. Geophys. Res. Lett., 45, 8604–8611, doi:  https://doi.org/10.1029/2018GL079427.CrossRefGoogle Scholar

Copyright information

© The Chinese Meteorological Society and Springer-Verlag Berlin Heidelberg 2019

Authors and Affiliations

  • Zhe Li
    • 1
    • 2
    Email author
  • Qijun Liu
    • 1
    • 2
  • Zhanshan Ma
    • 1
    • 2
    • 3
  • Jiong Chen
    • 1
    • 2
  • Qingu Jiang
    • 1
    • 2
  1. 1.National Meteorological Center, China Meteorological AdministrationBeijingChina
  2. 2.Numerical Weather Prediction Center of China Meteorological AdministrationBeijingChina
  3. 3.College of Global Change and Earth System ScienceBeijing Normal UniversityBeijingChina

Personalised recommendations