Advertisement

Journal of Meteorological Research

, Volume 33, Issue 5, pp 870–884 | Cite as

Relationship between Extreme Precipitation and Temperature in Two Different Regions: The Tibetan Plateau and Middle-East China

  • Rui Wang
  • Tao Xian
  • Mengxiao Wang
  • Fengjiao Chen
  • Yuanjian Yang
  • Xiangdong Zhang
  • Rui Li
  • Lei Zhong
  • Chun Zhao
  • Yunfei FuEmail author
Regular Article
  • 11 Downloads

Abstract

The change of extreme precipitation with temperature has regional characteristics in the context of global warming. In this study, radiosonde data, co-located rain gauge (RG) observations, and Tropical Rainfall Measuring Mission (TRMM) precipitation radar (PR) products are used to explore the relationship between extreme precipitation intensity and near-surface temperature in Middle-East China (MEC) and the eastern Tibetan Plateau (TP) during 1998–2012. The results show that extreme precipitation intensity increases with increasing temperature at an approximate Clausius-Clapeyron (C-C) rate (i.e., water vapor increases by 7% as temperature increases by 1°C based on the C-C equation) in MEC and TP, but the rate of increase is larger in TP than in MEC. This is probably because TP (MEC) is featured with deep convective (stratiform) precipitation, which releases more (less) latent heat and strengthens the convection intensity on a shorter (longer) timescale. It is also found that when temperature is higher than 25°C (15°C) in MEC (TP), the extreme precipitation intensity decreases with rise of temperature, suggesting that the precipitation intensity does not always increase with warming. In this case, the limited atmospheric humidity and precipitable water could be the primary factors for the decrease in extreme precipitation intensity at higher temperatures.

Key words

extreme precipitation Clausius-Clapeyron (C-C) rate temperature humidity precipitable water 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

We appreciate the NCDC, CMA-NMIC, and GSFC for providing the IGRA radiosonde data, RG precipitation data, and TRMM PR 2A25 products. We also appreciate the valuable comments by the Editor and two anonymous reviewers.

References

  1. Ali, H., and V. Mishra, 2017: Contrasting response of rainfall extremes to increase in surface air and dewpoint temperatures at urban locations in India. Sci. Rep., 7, 1228, doi:  https://doi.org/10.1038/s41598-017-01306-1.CrossRefGoogle Scholar
  2. Allan, R. P., and B. J. Soden, 2008: Atmospheric warming and the amplification of precipitation extremes. Science, 321, 1481–1484, doi:  https://doi.org/10.1126/science.1160787.CrossRefGoogle Scholar
  3. Bao, X. H., F. Q. Zhang, and J. H. Sun, 2011: Diurnal variations of warm-season precipitation east of the Tibetan Plateau over China. Mon. Wea. Rev., 139, 2790–2810, doi:  https://doi.org/10.1175/MWR-D-11-00006.1.CrossRefGoogle Scholar
  4. Barbero, R., S. Westra, G. Lenderink, et al., 2018: Temperature-extreme precipitation scaling: A two-way causality? Int. J. Climatol., 38, e1274–e1279, doi:  https://doi.org/10.1002/joc.5370.CrossRefGoogle Scholar
  5. Beck, F., and A. Bárdossy, 2013: Indirect downscaling of hourly precipitation based on atmospheric circulation and temperature. Hydrol. Earth Syst. Sci., 17, 4851–4863, doi:  https://doi.org/10.5194/hess-17-4851-2013.CrossRefGoogle Scholar
  6. Berg, P., and J. O. Haerter, 2013: Unexpected increase in precipitation intensity with temperature—A result of mixing of precipitation types? Atmos. Res., 119, 56–61, doi:  https://doi.org/10.1016/j.atmosres.2011.05.012.CrossRefGoogle Scholar
  7. Berg, P., J. O. Haerter, P. Thejll, et al., 2009: Seasonal characteristics of the relationship between daily precipitation intensity and surface temperature. J. Geophys. Res. Atmos., 114, D18102, doi:  https://doi.org/10.1029/2009JD012008.CrossRefGoogle Scholar
  8. Berg, P., C. Moseley, and J. O. Haerter, 2013: Strong increase in convective precipitation in response to higher temperatures. Nat. Geosci., 6, 181–185, doi:  https://doi.org/10.1038/NGEO1731.CrossRefGoogle Scholar
  9. Blenkinsop, S., S. C. Chan, E. J. Kendon, et al., 2015: Temperature influences on intense UK hourly precipitation and dependency on large-scale circulation. Environ. Res. Lett., 10, 054021, doi:  https://doi.org/10.1088/1748-9326/10/5/054021.CrossRefGoogle Scholar
  10. Bürger, G., M. Heistermann, and A. Bronstert, 2014: Towards sub-daily rainfall disaggregation via Clausius-Clapeyron. J. Hydrol., 15, 1303–1311, doi:  https://doi.org/10.1175/JHM-D-13-0161.1.Google Scholar
  11. Chan, S. C., E. J. Kendon, N. M. Roberts, et al., 2016: Downturn in scaling of UK extreme rainfall with temperature for future hottest days. Nat. Geosci., 9, 24–28, doi:  https://doi.org/10.1038/NGEO2596.CrossRefGoogle Scholar
  12. Curtis, S., A. Salahuddin, R. F. Adler, et al., 2007: Precipitation extremes estimated by GPCP and TRMM: ENSO relationships. J. Hydrol., 8, 678–689, doi:  https://doi.org/10.1175/JHM601.1.Google Scholar
  13. De Lima, M. I. P., F. E. Santo, A. M. Ramos, et al., 2013: Recent changes in daily precipitation and surface air temperature extremes in mainland Portugal, in the period 1941–2007. Atmos. Res., 127, 195–209, doi:  https://doi.org/10.1016/j.atmosres.2012.10.001.CrossRefGoogle Scholar
  14. Doswell III, C. A., H. E. Brooks, and R. A. Maddox, 1996: Flash flood forecasting: An ingredients-based methodology. Wea. Forecasting, 11, 560–581, doi:  https://doi.org/10.1175/1520-0434(1996)011<0560:FFFAIB>2.0.CO;2.CrossRefGoogle Scholar
  15. Drobinski, P., B. Alonzo, S. Bastin, et al., 2016: Scaling of precipitation extremes with temperature in the French Mediterranean region: What explains the hook shape? J. Geophys. Res. Atmos., 121, 3100–3119, doi:  https://doi.org/10.1002/2015JD023497.CrossRefGoogle Scholar
  16. Durre, I., R. S. Vose, and D. B. Wuertz, 2006: Overview of the integrated global radiosonde archive. J. Climate, 19, 53–68, doi:  https://doi.org/10.1175/JCLI3594.1.CrossRefGoogle Scholar
  17. Durre, I., C. N. Jr. Williams, X. G. Yin, et al., 2009: Radiosonde-based trends in precipitable water over the Northern Hemisphere: An update. J. Geophys. Res. Atmos., 111, D05112, doi:  https://doi.org/10.1029/2008JD010989.Google Scholar
  18. Fu, Y. F., and G. S. Liu, 2003: Precipitation characteristics in mid-latitude East Asia as observed by TRMM PR and TMI. J. Meteor. Soc. Japan, 81, 1353–1369, doi:  https://doi.org/10.2151/jmsj.81.1353.CrossRefGoogle Scholar
  19. Fu, Y. F., Y. H. Lin, G. S. Liu, et al., 2003: Seasonal characteristics of precipitation in 1998 over East Asia as derived from TRMM PR. Adv. Atmos. Sci., 20, 511–529, doi:  https://doi.org/10.1007/BF02915495.CrossRefGoogle Scholar
  20. Fu, Y. F., A. M. Zhang, Y. Liu, et al., 2008a: Characteristics of seasonal scale convective and stratiform precipitation in Asia based on measurements by TRMM precipitation radar. Acta Meteor. Sinica, 66, 730–746, doi:  https://doi.org/10.3321/j.issn:0577-6619.2008.05.007. (in Chinese)Google Scholar
  21. Fu, Y. F., Q. Liu, Y. Zi, et al., 2008b: Summer precipitation and latent heating over the Tibetan Plateau based on TRMM measurements. Plateau and Mountain Meteorology Research, 28, 8–17, doi:  https://doi.org/10.9699/j.issn.l744-2144.0088.01.022. (in Chinese)Google Scholar
  22. Fu, Y. F., F. J. Chen, G. S. Liu, et al., 2016: Recent trends of summer convective and stratiform precipitation in mid-eastern China. Sci. Rep., 6, 33044, doi:  https://doi.org/10.1038/srep33044.CrossRefGoogle Scholar
  23. Fu, Y. F., X. Pan, Y. J. Yang, et al., 2017: Climatological characteristics of summer precipitation over East Asia measured by TRMM PR: A review. J. Meteor. Res., 31, 142–159, doi:  https://doi.org/10.1007/s13351-017-6156-9.CrossRefGoogle Scholar
  24. Fu, Y. F., X. Pan, T. Xian, et al., 2018: Precipitation characteristics over the steep slope of the Himalayas in rainy season observed by TRMM PR and VIRS. Climate Dyn., 51, 1971–1989, doi:  https://doi.org/10.1007/s00382-017-3992-3.CrossRefGoogle Scholar
  25. Fujita, M., and T. Sato, 2017: Observed behaviours of precipitable water vapour and precipitation intensity in response to upper air profiles estimated from surface air temperature. Sci. Rep., 7, 4233, doi:  https://doi.org/10.1038/s41598-017-04443-9.CrossRefGoogle Scholar
  26. Gao, X. C., Q. Zhu, Z. Y. Yang, et al., 2018: Temperature dependence of hourly, daily, and event-based precipitation extremes over China. Sci. Rep., 8, 17564, doi:  https://doi.org/10.1038/s41598-018-35405-4.CrossRefGoogle Scholar
  27. Guo, J. P., H. Liu, Z. Q. Li, et al., 2018: Aerosol-induced changes in the vertical structure of precipitation: A perspective of TRMM precipitation radar. Atmos. Chem. Phys., 18, 13329–13343, doi:  https://doi.org/10.5194/acp-18-13329-2018.CrossRefGoogle Scholar
  28. Guo, Y. J., and Y. H. Ding, 2008: Homogeneity and long-term trend analysis on radiosonde temperature time series in China during recent 50 years. J. Appl. Meteor. Sci., 19, 646–654, doi:  https://doi.org/10.3969/j.issn.1001-7313.2008.06.002. (in Chinese)Google Scholar
  29. Guo, Y. J., and Y. H. Ding, 2009: Long-term free-atmosphere temperature trends in China derived from homogenized in situ radiosonde temperature series. J. Climate, 22, 1037–1051, doi:  https://doi.org/10.1175/2008JCLI2480.1.CrossRefGoogle Scholar
  30. Haerter, J. O., and P. Berg, 2009: Unexpected rise in extreme precipitation caused by a shift in rain type? Nat. Geosci., 2, 372–373, doi:  https://doi.org/10.1038/ngeo523.CrossRefGoogle Scholar
  31. Hardwick Jones, R., S. Westra, and A. Sharma, 2010: Observed relationships between extreme sub-daily precipitation, surface temperature, and relative humidity. Geophys. Res. Lett., 37, L22805, doi:  https://doi.org/10.1029/2010GL045081.CrossRefGoogle Scholar
  32. Houze, R. A. Jr., 1997: Stratiform precipitation in regions of convection: A meteorological paradox? Bull. Amer. Meteor. Soc., 78, 2179–2196, doi:  https://doi.org/10.1175/1520-0477(1997)078<2179:SPIROC>2.0.CO;2.CrossRefGoogle Scholar
  33. Hu, L., Y. D. Li, Y. Song, et al., 2011: Seasonal variability in tropical and subtropical convective and stratiform precipitation of the East Asian monsoon. Sci. China Earth Sci., 51, 1595–1603, doi:  https://doi.org/10.1007/s11430-011-4225-y.CrossRefGoogle Scholar
  34. Huang, D. Q., P. W. Yan, G. P. Liu, et al., 2017: Relationship between precipitation extremes with temperature in the warm season in Anhui Province. Climatic Environ. Res., 22, 623–632. (in Chinese)Google Scholar
  35. Huang, Y. J., and X. P. Cui, 2015: Moisture sources of an extreme precipitation event in Sichuan, China, based on the Lagrangian method. Atmos. Sci. Lett., 16, 177–183, doi:  https://doi.org/10.1002/asl2.562.CrossRefGoogle Scholar
  36. Jian, M. Q., Y. T. Qiao, W. Huang, et al., 2011: The variation of evaporation over South China and its relationships to precipitation. J. Trop. Meteor., 17, 285–292, doi:  https://doi.org/10.3969/j.issn.1006-8775.2011.03.010.Google Scholar
  37. Kendon, E. J., N. M. Roberts, H. J. Fowler, et al., 2014: Heavier summer downpours with climate change revealed by weather forecast resolution model. Nat. Climate Change, 1, 570–576, doi:  https://doi.org/10.1038/NCLIMATE2258.CrossRefGoogle Scholar
  38. Knapp, A. K., C. Beier, D. D. Briske, et al., 2008: Consequences of more extreme precipitation regimes for terrestrial ecosystems. BioScience, 58, 811–821, doi:  https://doi.org/10.1641/B580908.CrossRefGoogle Scholar
  39. Kummerow, C., W. Barnes, T. Kozu, et al., 1998: The tropical rainfall measuring mission (TRMM) sensor package. J. Atmos. Oceanic Technol., 15, 809–817, doi:  https://doi.org/10.1175/1520-0426(1998)015<0809:TTRMMT>2.0.CO;2.CrossRefGoogle Scholar
  40. Lenderink, G., and E. van Meijgaard, 2008: Increase in hourly precipitation extremes beyond expectations from temperature changes. Nat. Geosci., 1, 511–514, doi:  https://doi.org/10.1038/ngeo262.CrossRefGoogle Scholar
  41. Lenderink, G., and E. van Meijgaard, 2010: Linking increases in hourly precipitation extremes to atmospheric temperature and moisture changes. Environ. Res. Lett., 5, 025208, doi:  https://doi.org/10.1088/1748-9326/5/2/025208.CrossRefGoogle Scholar
  42. Lepore, C., D. Veneziano, and A. Molini, 2015: Temperature and CAPE dependence of rainfall extremes in the eastern United States. Geophys. Res. Lett., 42, 74–83, doi:  https://doi.org/10.1002/2014GL062247.CrossRefGoogle Scholar
  43. Li, R., Q. L. Min, X. Q. Wu, et al., 2013: Retrieving latent heating vertical structure from cloud and precipitation profiles—Part II: Deep convective and stratiform rain processes. J. Quant. Spectrosc. Radiat. Transfer, 122, 47–63, doi:  https://doi.org/10.1016/j.jqsrt.2012.11.029.CrossRefGoogle Scholar
  44. Li, R., W. C. Shao, J. C. Guo, et al., 2019: A simplified algorithm to estimate latent heating rate using vertical rainfall profiles over the Tibetan Plateau. J. Geophys. Res. Atmos., 124, 942–963, doi:  https://doi.org/10.1029/2018JD029297.CrossRefGoogle Scholar
  45. Liu, X. D., and Z. Y. Yin, 2001: Spatial and temporal variation of summer precipitation over the eastern Tibetan Plateau and the North Atlantic Oscillation. J. Climate, 14, 2896–2909, doi:  https://doi.org/10.1175/1520-0442(2001)014<2896:SATVOS>2.0.CO;2.CrossRefGoogle Scholar
  46. Lochbihler, K., G. Lenderink, and A. P. Siebesma, 2017: The spatial extent of rainfall events and its relation to precipitation scaling. Geophys. Res. Lett., 44, 8629–8636, doi:  https://doi.org/10.1002/2017GL074857.CrossRefGoogle Scholar
  47. Lu, D. R., Y. J. Yang, and Y. F. Fu, 2016: Interannual variability of summer monsoon convective and stratiform precipitations in East Asia during 1998–2013. Int. J. Climatol., 36, 3507–3520, doi:  https://doi.org/10.1002/joc.4572.CrossRefGoogle Scholar
  48. Luo, H. B., and M. Yanai, 1983: The large-scale circulation and heat sources over the Tibetan Plateau and surrounding areas during the early summer of 1979. Part I: Precipitation and kinematic analyses. Mon. Wea. Rev., 111, 922–944, doi:  https://doi.org/10.1175/1520-0493(1983)111<0922:TLSCAH>2.0.CO;2.CrossRefGoogle Scholar
  49. Mao, J. Y., and G. X. Wu, 2006: Impacts of anomalies of thermal state over the Qinghai-Xizang Plateau and sea surface temperature on interannual variability of the Asian monsoon seasonal transition. Chinese J. Geophys., 49, 1279–1287, doi:  https://doi.org/10.3321/j.issn:0001-5733.2006.05.006. (in Chinese)CrossRefGoogle Scholar
  50. Miao, C. Y., Q. H. Sun, A. G. L. Borthwick, et al., 2016: Linkage between hourly precipitation events and atmospheric temperature changes over China during the warm season. Sci. Rep., 6, 22543, doi:  https://doi.org/10.1038/srep22543.CrossRefGoogle Scholar
  51. Mishra, V., J. M. Wallace, and D. P. Lettenmaier, 2012: Relationship between hourly extreme precipitation and local air temperature in the United States. Geophys. Res. Lett., 39, L16403, doi:  https://doi.org/10.1029/2012GL052790.Google Scholar
  52. Mitovski, T., and I. Folkins, 2014: Anomaly patterns about strong convective events in the tropics and midlatitudes: Observations from radiosondes and surface weather stations. J. Geophys. Res. Atmos., 119, 385–406, doi:  https://doi.org/10.1002/2013JD020447.CrossRefGoogle Scholar
  53. Molnar, P., S. Fatichi, L. Gaál, et al., 2015: Storm type effects on super Clausius-Clapeyron scaling of intense rainstorm properties with air temperature. Hydrol. Earth Syst. Sci., 19, 1753–1766, doi:  https://doi.org/10.5194/hess-19-1753-2015.CrossRefGoogle Scholar
  54. Pan, X., and Y. F. Fu, 2015: Analysis on climatological characteristics of deep and shallow precipitation cloud in summer over Qinghai-Xizang Plateau. Plateau Meteor., 34, 1191–1203. (in Chinese)Google Scholar
  55. Panthou, G., A. Mailhot, E. Laurence, et al., 2014: Relationship between surface temperature and extreme rainfalls: A multi-time-scale and event-based analysis. J. Hydrometeor., 15, 1999–2011, doi:  https://doi.org/10.1175/JHM-D-14-0020.1.CrossRefGoogle Scholar
  56. Park, I. H., and S. K. Min, 2017: Role of convective precipitation in the relationship between subdaily extreme precipitation and temperature. J. Climate, 30, 9527–9537, doi:  https://doi.org/10.1175/JCLI-D-17-0075.1.CrossRefGoogle Scholar
  57. Peleg, N., F. Marra, S. Fatichi, et al., 2018: Intensification of convective rain cells at warmer temperatures observed from highresolution weather radar data. J. Hydrometeor., 19, 715–726, doi:  https://doi.org/10.1175/JHM-D-17-0158.1.CrossRefGoogle Scholar
  58. Rapp, A. D., C. D. Kummerow, and L. Fowler, 2011: Interactions between warm rain clouds and atmospheric preconditioning for deep convection in the tropics. J. Geophys. Res. Atmos., 116, D23210, doi:  https://doi.org/10.1029/2011JD016143.Google Scholar
  59. Schleiss, M., 2018: How intermittency affects the rate at which rainfall extremes respond to changes in temperature. Earth Syst. Dyn., 9, 955–968, doi:  https://doi.org/10.5194/esd-9-955-2018.CrossRefGoogle Scholar
  60. Schroeer, K., and G. Kirchengast, 2018: Sensitivity of extreme precipitation to temperature: The variability of scaling factors from a regional to local perspective. Climate Dyn., 50, 3981–3994, doi:  https://doi.org/10.1007/s00382-017-3857-9.CrossRefGoogle Scholar
  61. Schumacher, C., and R. A. Jr. Houze, 2003: The TRMM precipitation radar’s view of shallow, isolated rain. J. Appl. Meteor., 42, 1519–1524, doi:  https://doi.org/10.1175/1520-0450(2003)042<1519:TTPRVO>2.0.CO;2.CrossRefGoogle Scholar
  62. Sharma, S., and P. P. Mujumdar, 2019: On the relationship of daily rainfall extremes and local mean temperature. J. Hydrol., 572, 179–191, doi:  https://doi.org/10.1016/j.jhydrol.2019.02.048.CrossRefGoogle Scholar
  63. Shaw, S. B., A. A. Royem, and S. J. Riha, 2011: The relationship between extreme hourly precipitation and surface temperature in different hydroclimatic regions of the United States. J. Hydrometeor., 12, 319–325, doi:  https://doi.org/10.1175/2011JHM1364.1.CrossRefGoogle Scholar
  64. Sheng, P. X., J. T. Mao, J. G. Li, et al., 2003: Atmospheric Physics. Peking University Press, Beijing, 294 pp. (in Chinese)Google Scholar
  65. Sun, W., J. Li, and R. C. Yu, 2013: Corresponding relation between warm season precipitation extremes and surface air temperature in South China. Adv. Climate Change Res., 4, 160–165, doi:  https://doi.org/10.3724/SP.J.1248.2013.160.CrossRefGoogle Scholar
  66. Trenberth, K. E., A. G. Dai, R. M. Rasmussen, et al., 2003: The changing character of precipitation. Bull. Amer. Meteor. Soc., 84, 1205–1218, doi:  https://doi.org/10.1175/BAMS-84-9-1205.CrossRefGoogle Scholar
  67. Utsumi, N., S. Seto, S. Kanae, et al., 2011: Does higher surface temperature intensify extreme precipitation? Geophys. Res. Lett., 38, L16708, doi:  https://doi.org/10.1029/2011GL048426.CrossRefGoogle Scholar
  68. Wang, H., F. B. Sun, and W. B. Liu, 2018: The dependence of daily and hourly precipitation extremes on temperature and atmospheric humidity over China. J. Climate, 31, 8931–8944, doi:  https://doi.org/10.1175/JCLI-D-18-0050.1.CrossRefGoogle Scholar
  69. Wang, R., and Y. F. Fu, 2017: Structural characteristics of atmospheric temperature and humidity inside clouds of convective and stratiform precipitation in the rainy season over East Asia. J. Meteor. Res., 31, 890–905, doi:  https://doi.org/10.1007/s13351-017-7038-x.CrossRefGoogle Scholar
  70. Wang, R., Y. F. Fu, T. Xian, et al., 2017: Evaluation of atmospheric precipitable water characteristics and trends in mainland China from 1995 to 2012. J. Climate, 30, 8673–8688, doi:  https://doi.org/10.1175/JCLI-D-16-0433.1.CrossRefGoogle Scholar
  71. Wang, Y. J., B. T. Zhou, D. H. Qin, et al., 2017: Changes in mean and extreme temperature and precipitation over the arid region of northwestern China: Observation and projection. Adv. Atmos. Sci., 34, 289–305, doi:  https://doi.org/10.1007/s00376-016-6160-5.CrossRefGoogle Scholar
  72. Xiao, C., P. L. Wu, L. X. Zhang, et al., 2016: Robust increase in extreme summer rainfall intensity during the past four decades observed in China. Sci. Rep., 6, 38506, doi:  https://doi.org/10.1038/srep38506.CrossRefGoogle Scholar
  73. Xu, W. X., 2013: Precipitation and convective characteristics of summer deep convection over East Asia observed by TRMM. Mon. Wea. Rev., 141, 1577–1592, doi:  https://doi.org/10.1175/MWR-D-12-00177.1.CrossRefGoogle Scholar
  74. Yang, Y. J., H. Wang, F. J. Chen, et al., 2019: TRMM-based optical and microphysical features of precipitating clouds in summer over the Yangtze-Huaihe River valley, China. Pure Appl. Geophys., 176, 357–370, doi:  https://doi.org/10.1007/s00024-018-1940-8.CrossRefGoogle Scholar
  75. Ye, H. C., E. J. Fetzer, S. Wong, et al., 2014: Impact of increased water vapor on precipitation efficiency over northern Eurasia. Geophys. Res. Lett., 11, 2941–2947, doi:  https://doi.org/10.1002/2014GL059830.CrossRefGoogle Scholar
  76. Ye, H. C., E. J. Fetzer, S. Wong, et al., 2015: Increasing atmospheric water vapor and higher daily precipitation intensity over northern Eurasia. Geophys. Res. Lett., 12, 9404–9410, doi:  https://doi.org/10.1002/2015GL066104.CrossRefGoogle Scholar
  77. Yu, R. C., T. J. Zhou, A. Y. Xiong, et al., 2007: Diurnal variations of summer precipitation over contiguous China. Geophys. Res. Lett., 31, L01704, doi:  https://doi.org/10.1029/2006GL028129.Google Scholar
  78. Zhai, P. M., and R. E. Eskridge, 1997: Atmospheric water vapor over China. J. Climate, 10, 2643–2652, doi:  https://doi.org/10.1175/1520-0442(1997)010<2643:AWVOC>2.0.CO;2.CrossRefGoogle Scholar
  79. Zhai, P. M., C. C. Wang, and W. Li, 2007: A review on study of change in precipitation extremes. Adv. Climate Change Res., 3, 144–148, doi:  https://doi.org/10.3969/j.issn.1673-1719.2007.03.004. (in Chinese)Google Scholar
  80. Zhang, X., X. P. Yao, J. L. Ma, et al., 2016: Climatology of transverse shear lines related to heavy rainfall over the Tibetan Plateau during boreal summer. J. Meteor. Res., 30, 915–926, doi:  https://doi.org/10.1007/s13351-016-6952-7.CrossRefGoogle Scholar
  81. Zhang, Y., R. C. Yu, J. Li, et al., 2013: Dynamic and thermodynamic relations of distinctive stratus clouds on the lee side of the Tibetan Plateau in the cold season. J. Climate, 26, 8378–8391, doi:  https://doi.org/10.1175/JCLI-D-13-00009.1.CrossRefGoogle Scholar
  82. Zhao, C. S., X. X. Tie, and Y. P. Lin, 2006: A possible positive feedback of reduction of precipitation and increase in aerosols over eastern central China. Geophys. Res. Lett., 33, L11814, doi:  https://doi.org/10.1029/2006GL025959.CrossRefGoogle Scholar
  83. Zhao, T. B., A. G. Dai, and J. H. Wang, 2012: Trends in tropospheric humidity from 1970 to 2008 over China from a homogenized radiosonde dataset. J. Climate, 25, 4549–4567, doi:  https://doi.org/10.1175/JCLI-D-11-00557.1.CrossRefGoogle Scholar
  84. Zhou, L., M. C. Lan, R. H. Cai, et al., 2018: Projection and uncertainties of extreme precipitation over the Yangtze River valley in the early 21st century. Acta Meteor. Sinica, 76, 47–61, doi:  https://doi.org/10.11676/qxxb2017.084. (in Chinese)Google Scholar
  85. Zhou, T. J., and R. C. Yu, 2005: Atmospheric water vapor transport associated with typical anomalous summer rainfall patterns in China. J. Geophys. Res. Atmos., 110, D08104, doi:  https://doi.org/10.1029/2004JD005413.Google Scholar
  86. Zhou, T. J., R. C. Yu, H. M. Chen, et al., 2008: Summer precipitation frequency, intensity, and diurnal cycle over China: A comparison of satellite data with rain gauge observations. J Climate, 21, 3997–4010, doi:  https://doi.org/10.1175/2008JCLI2028.1.CrossRefGoogle Scholar
  87. Zhu, Y. L., H. J. Wang, W. Zhou, et al., 2011: Recent changes in the summer precipitation pattern in East China and the background circulation. Climate Dyn., 36, 1463–1473, doi:  https://doi.org/10.1007/s00382-010-0852-9.CrossRefGoogle Scholar

Copyright information

© The Chinese Meteorological Society and Springer-Verlag Berlin Heidelberg 2019

Authors and Affiliations

  • Rui Wang
    • 1
  • Tao Xian
    • 1
  • Mengxiao Wang
    • 1
  • Fengjiao Chen
    • 2
  • Yuanjian Yang
    • 3
  • Xiangdong Zhang
    • 4
  • Rui Li
    • 1
  • Lei Zhong
    • 1
  • Chun Zhao
    • 1
  • Yunfei Fu
    • 1
    Email author
  1. 1.School of Earth and Space SciencesUniversity of Science and Technology of ChinaHefeiChina
  2. 2.Anhui Meteorological Information CenterAnhui Institute of Meteorological SciencesHefeiChina
  3. 3.School of Atmospheric physicsNanjing University of Information Science & TechnologyNanjingChina
  4. 4.International Arctic Research Center and Department of Atmospheric SciencesUniversity of Alaska FairbanksFairbanksUSA

Personalised recommendations