Advertisement

Journal of Meteorological Research

, Volume 33, Issue 2, pp 323–335 | Cite as

Springtime Convective Quasi-Biweekly Oscillation and Interannual Variation of Its Intensity over the South China Sea and Western North Pacific

  • Zhiqing XuEmail author
  • Ke Fan
  • Huijun Wang
Regular Articles
  • 9 Downloads

Abstract

This study investigates characteristics of the convective quasi-biweekly oscillation (QBWO) over the South China Sea (SCS) and western North Pacific (WNP) in spring, and the interannual variation of its intensity. Convective QBWO over the WNP and SCS shows both similarities and differences. Convective QBWO over the WNP originates mainly from southeast of the Philippine Sea and propagates northwestward. In contrast, convective QBWO over the SCS can be traced mainly to east of the Philippines and features a westward propagation. Such a westward or northwestward propagation is probably related to n = 1 equatorial Rossby waves. During the evolution of convective QBWO over the WNP and SCS, the vertical motion and specific humidity exhibit a barotropic structure and the vertical relative vorticity shows a baroclinic structure in the troposphere. The dominant mode of interannual variation of convective QBWO intensity over the SCS-WNP region in spring is homogeneous. Its positive phase indicates enhanced convective QBWO intensity accompanied by local enhanced QBWO intensity of vertical motion throughout the troposphere as well as local enhanced (weakened) QBWO intensity of kinetic energy, vertical relative vorticity, and wind in the lower (upper) troposphere. The positive phase usually results from local increases of the background moisture and anomalous vertical shear of easterlies. The latter contributes to the relationship between the dominant mode and QBWO intensities of kinetic energy, vertical relative vorticity, and wind. Finally, a connection between the dominant mode and the sea surface temperature anomalies in the tropical Pacific Ocean is demonstrated.

Key words

convective quasi-biweekly oscillation interannual variation South China Sea western North Pacific spring 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adler, R. F., G. J. Huffman, A. Chang, et al., 2003: The version-2 global precipitation climatology project (GPCP) monthly precipitation analysis (1979-present). J. Hydrometeorol., 4, 1147–1167, doi:10.1175/1525-7541(2003)004<1147:TVGPCP>2.0.CO;2.CrossRefGoogle Scholar
  2. Chatterjee, P., and B. N. Goswami, 2004: Structure, genesis and scale selection of the tropical quasi-biweekly mode. Quart. J. Roy. Meteor. Soc., 130, 1171–1194, doi: 10.1256/qj.03.133.CrossRefGoogle Scholar
  3. Chen, G. H., and C. H. Sui, 2010: Characteristics and origin of quasi-biweekly oscillation over the western North Pacific during boreal summer. J. Geophys. Res. Atmos., 115, D14113, doi: 10.1029/2009jd013389.CrossRefGoogle Scholar
  4. Chen, G. H., and X. Wang, 2017: Effect of the westward-propagating zonal wind anomaly on the initial development of quasi-biweekly oscillation over the South China Sea during early summer. Atmos. Ocean. Sci. Lett., 10, 89–95, doi: 10.1080/16742834.2017.1243002.CrossRefGoogle Scholar
  5. Chen, J. P., Z. P. Wen, R. G. Wu, et al., 2015: Influences of northward propagating 25-90-day and quasi-biweekly oscillations on eastern China summer rainfall. Climate Dyn., 45, 105–124, doi: 10.1007/s00382-014-2334-y.CrossRefGoogle Scholar
  6. Chen, T. C., and J. M. Chen, 1995: An observational study of the South China Sea monsoon during the 1979 summer: Onset and life cycle. Mon. Wea. Rev., 123, 2295–2318, doi: 10.1175/1520-0493(1995)123<2295:AOSOTS>2.0.CO;2.CrossRefGoogle Scholar
  7. Chen, X., J. Ling, and C. Y. Li, 2016: Evolution of the Madden-Julian oscillation in two types of El Niño. J. Climate, 29, 1919–1934, doi: 10.1175/JCLI-D-15-0486.1.CrossRefGoogle Scholar
  8. Dee, D. P., S. M. Uppala, A. J. Simmons, et al., 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553–597, doi: 10.1002/qj.828.CrossRefGoogle Scholar
  9. Duchon, C. E., 1979: Lanczos filtering in one and two dimensions. J. Appl. Meteor, 18, 1016–1022, doi: 10.1175/1520-0450(1979)018<1016:LFIOAT>2.0.CO;2.CrossRefGoogle Scholar
  10. Fukutomi, Y., and T. Yasunari, 1999: 10-25 day intraseasonal variations of convection and circulation over East Asia and western North Pacific during early summer. J. Meteor. Soc. Japan, 77, 753–769, doi: 10.2151/jmsj1965.77.3_753.CrossRefGoogle Scholar
  11. Gushchina, D., and B. Dewitte, 2012: Intraseasonal tropical atmospheric variability associated with the two flavors of El Niño. Mon. Wea. Rev., 140, 3669–3681, doi: 10.1175/MWR-D-11-00267.1.CrossRefGoogle Scholar
  12. Hsu, P. C., T. H. Lee, C. H. Tsou, et al., 2017: Role of scale interactions in the abrupt change of tropical cyclone in autumn over the western North Pacific. Climate Dyn., 49, 3175–3192, doi: 10.1007/s00382-016-3504-x.CrossRefGoogle Scholar
  13. Jia, X. L., and S. Yang, 2013: Impact of the quasi-biweekly oscillation over the western North Pacific on East Asian subtropical monsoon during early summer. J. Geophys. Res. Atmos., 118, 4421–4434, doi: 10.1002/jgrd.50422.CrossRefGoogle Scholar
  14. Kikuchi, K., and B. Wang, 2009: Global perspective of the quasi-biweekly oscillation. J. Climate, 22, 1340–1359, doi: 10.1175/2008JCLI2368.1.CrossRefGoogle Scholar
  15. Li, C. H., T. Li, A. L. Lin, et al., 2015: Relationship between summer rainfall anomalies and sub-seasonal oscillations in South China. Climate Dyn., 44, 423–439, doi: 10.1007/s00382-014-2172-y.CrossRefGoogle Scholar
  16. Li, R. C. Y., and W. Zhou, 2013: Modulation of western North Pacific tropical cyclone activity by the ISO. Part I: Genesis and intensity. J. Climate, 26, 2904–2918, doi: 10.1175/JCLI-D-12-00210.1.CrossRefGoogle Scholar
  17. Li, T., and B. Wang, 2005: A review on the western North Pacific monsoon: Synoptic-to-interannual variabilities. Terrestrial, Atmospheric and Oceanic Sciences, 16, 285–314, doi: 10.3319/TAO.2005.16.2.285(A).CrossRefGoogle Scholar
  18. Liebmann, B., and C. A. Smith, 1996: Description of a complete (interpolated) outgoing longwave radiation dataset. Bull. Amer. Meteor. Soc., 77, 1275–1277, doi: 10.1175/1520-0477-77.6.1274.Google Scholar
  19. Lin, A. L., and T. Li, 2008: Energy spectrum characteristics of boreal summer intraseasonal oscillations: Climatology and variations during the ENSO developing and decaying phases. J. Climate, 21, 6304–6320, doi: 10.1175/2008JCLI2331.1.CrossRefGoogle Scholar
  20. Mao, J. Y., and J. C. L. Chan, 2005: Intraseasonal variability of the South China Sea summer monsoon. J. Climate, 18, 2388–2402, doi: 10.1175/JCLI3395.1.CrossRefGoogle Scholar
  21. North, G. R., T. L. Bell, R. F. Cahalan, et al., 1982: Sampling errors in the estimation of empirical orthogonal functions. Mon. Wea. Rev., 110, 699–706, doi: 10.1175/1520-0493(1982)110<0699:SEITEO>2.0.CO;2.CrossRefGoogle Scholar
  22. Ren, X. J., X. Q. Yang, and X. G. Sun, 2013: Zonal oscillation of western Pacific subtropical high and subseasonal SST variations during Yangtze persistent heavy rainfall events. J. Climate, 26, 8929–8946, doi: 10.1175/JCLI-D-12-00861.1.CrossRefGoogle Scholar
  23. Smith, T. M., R. W. Reynolds, T. C. Peterson, et al, 2008: Improvements to NOAA’s historical merged land-ocean surface temperature analysis (1880-2006). J. Climate, 21, 2283–2296, doi: 10.1175/2007JCLI2100.1.CrossRefGoogle Scholar
  24. Teng, H. Y., and B. Wang, 2003: Interannual variations of the boreal summer intraseasonal oscillation in the Asian-Pacific region. J. Climate, 16, 3572–3584, doi: 10.1175/1520-0442 (2003)016<3572:IVOTBS>2.0.CO;2.CrossRefGoogle Scholar
  25. Waliser, D. E., N. E. Graham, and C. Gautier, 1993: Comparison of the highly reflective cloud and outgoing longwave radiation datasets for use in estimating tropical deep convection. J. Climate, 6, 331–353, doi: 10.1175/1520-0442(1993)006<0331:cothrc>2.0.co;2.CrossRefGoogle Scholar
  26. Wang, B., and X. S. Xie, 1996: Low-frequency equatorial waves in vertically sheared zonal flow. Part I: Stable waves. J. At-mos. Sci., 53, 449–467, doi: 10.1175/1520-0469(1996)053<0449:LFEWIV>2.0.CO;2.CrossRefGoogle Scholar
  27. Wang, B., R. G. Wu, and X. H. Fu, 2000: Pacific-East Asian tele-connection: How does ENSO affect East Asian climate? J. Climate, 13, 1517–1536, doi: 10.1175/1520-0442(2000)013<1517:PEATHE>2.0.CO;2.CrossRefGoogle Scholar
  28. Wang, L., T. Li, L. Chen, et al, 2018: Modulation of the MJO intensity over the equatorial western Pacific by two types of El Nino. Climate Dyn., 51, 687–700, doi: 10.1007/s00382-017-3949-6.CrossRefGoogle Scholar
  29. Wen, M., and R. H. Zhang, 2008: Quasi-biweekly oscillation of the convection around Sumatra and low-level tropical circulation in boreal spring. Mon. Wea. Rev., 136, 189–205, doi: 10.1175/2007MWR1991.1.CrossRefGoogle Scholar
  30. Wen, M., T. Li, R. H. Zhang, et al., 2010: Structure and origin of the quasi-biweekly oscillation over the tropical Indian Ocean in boreal spring. J. Atmos. Sci., 67, 1965–1982, doi: 10.1175/2009JAS3105.1.CrossRefGoogle Scholar
  31. Wu, B., T. J. Zhou, and T. Li, 2017: Atmospheric dynamic and thermodynamic processes driving the western North Pacific anomalous anticyclone during El Niño. Part II: Formation processes. J. Climate, 30, 9637–9650, doi: 10.1175/JCLI-D-16-0495.1.CrossRefGoogle Scholar
  32. Wu, R. G., 2018: Feedback of 10-20-day intraseasonal oscillations on seasonal mean SST in the tropical western North Pacific during boreal spring through fall. Climate Dyn., 51, 4169–4184, doi: 10.1007/s00382-016-3362-6.CrossRefGoogle Scholar
  33. Wu, R. G., and X. Cao, 2017: Relationship of boreal summer 10-20-day and 30-60-day intraseasonal oscillation intensity over the tropical western North Pacific to tropical Indo-Pacific SST. Climate Dyn., 48, 3529–3546, doi: 10.1007/s00382-016-3282-5.CrossRefGoogle Scholar
  34. Wu, R. G., and L. Song, 2018: Spatiotemporal change of intraseasonal oscillation intensity over the tropical Indo-Pacific Ocean associated with El Niño and La Niña events. Climate Dyn., 50, 1221–1242, doi: 10.1007/s00382-017-3675-0.CrossRefGoogle Scholar
  35. Xie, X. S., and B. Wang, 1996: Low-frequency equatorial waves in vertically sheared zonal flow. Part II: Unstable waves. J. Atmos. Sci., 53, 3589–3605, doi: 10.1175/1520-0469(1996)053<3589:LFEWIV>2.0.CO;2.CrossRefGoogle Scholar
  36. Xu, Z. Q., T. Li, and K. Fan, 2017: The weakened intensity of the atmospheric quasi-biweekly oscillation over the western North Pacific during late summer around the late 1990s. J. Climate, 30, 9807–9826, doi: 10.1175/JCLI-D-16-0759.1.CrossRefGoogle Scholar
  37. Yang, J., B. Wang, and B. Wang, 2008: Anticorrelated intensity change of the quasi-biweekly and 30-50-day oscillations over the South China Sea. Geophys. Res. Lett., 35, L16702, doi: 10.1029/2008GL034449.CrossRefGoogle Scholar
  38. Yuan, Y., and S. Yang, 2012: Impacts of different types of El Nino on the East Asian climate: Focus on ENSO cycles. J. Climate, 25, 7702–7722, doi: 10.1175/JCLI-D-11-00576.1.CrossRefGoogle Scholar
  39. Yuan, Y., C. Y. Li, and J. Ling, 2015: Different MJO activities between EP El Nino and CP El Nino. Scientia Sinica Terrae, 45, 318–334, doi: 10.1360/zd-2015-45-3-318. (in Chinese)CrossRefGoogle Scholar
  40. Zhang, R. H., A. Sumi, and M. Kimoto, 1996: Impact of El Niño on the East Asian monsoon: A diagnostic study of the ’86/87 and ’91/92 events. J. Meteor. Soc. Japan, 74, 49–62, doi: 10.2151/jmsjl965.74.1_49.CrossRefGoogle Scholar
  41. Zhou, W., and J. C. L. Chan, 2005: Intraseasonal oscillations and the South China Sea summer monsoon onset. Int. J. Climatol., 25, 1585–1609, doi: 10.1002/joc.1209.CrossRefGoogle Scholar
  42. Zveryaev, I. I., 2002: Interdecadal changes in the zonal wind and the intensity of intraseasonal oscillations during boreal summer Asian monsoon. Tellus A, 54, 288–298, doi: 10.1034/j.1600-0870.2002.00235.X.CrossRefGoogle Scholar

Copyright information

© The Chinese Meteorological Society and Springer-Verlag Berlin Heidelberg 2019

Authors and Affiliations

  1. 1.Nansen-Zhu International Research Centre, Institute of Atmospheric PhysicsChinese Academy of SciencesBeijingChina
  2. 2.Climate Change Research CenterChinese Academy of SciencesBeijingChina
  3. 3.University of the Chinese Academy of SciencesBeijingChina
  4. 4.Collaborative Innovation Center on Forecast and Evaluation of Meteorological DisastersNanjing University of Information Science &TechnologyNanjingChina

Personalised recommendations