Advertisement

Journal of Meteorological Research

, Volume 33, Issue 3, pp 540–552 | Cite as

The China Multi-Model Ensemble Prediction System and Its Application to Flood-Season Prediction in 2018

  • Hong-Li RenEmail author
  • Yujie Wu
  • Qing Bao
  • Jiehua Ma
  • Changzheng Liu
  • Jianghua Wan
  • Qiaoping Li
  • Xiaofei Wu
  • Ying Liu
  • Ben Tian
  • Joshua-Xiouhua Fu
  • Jianqi Sun
Regular Articles

Abstract

Multi-model ensemble prediction is an effective approach for improving the prediction skill short-term climate prediction and evaluating related uncertainties. Based on a combination of localized operation outputs of Chinese climate models and imported forecast data of some international operational models, the National Climate Center of the China Meteorological Administration has established the China multi-model ensemble prediction system version 1.0 (CMMEv1.0) for monthly-seasonal prediction of primary climate variability modes and climate elements. We verified the real-time forecasts of CMMEv1.0 for the 2018 flood season (June-August) starting from March 2018 and evaluated the 1991–2016 hindcasts of CMMEv1.0. The results show that CMMEv1.0 has a significantly high prediction skill for global sea surface temperature (SST) anomalies, especially for the El Niño-Southern Oscillation (EN-SO) in the tropical central-eastern Pacific. Additionally, its prediction skill for the North Atlantic SST triple (NAST) mode is high, but is relatively low for the Indian Ocean Dipole (IOD) mode. Moreover, CMMEv1.0 has high skills in predicting the western Pacific subtropical high (WPSH) and East Asian summer monsoon (EASM) in the June–July–August (JJA) season. The JJA air temperature in the CMMEv1.0 is predicted with a fairly high skill in most regions of China, while the JJA precipitation exhibits some skills only in northwestern and eastern China. For real-time forecasts in March–August 2018, CMMEv1.0 has accurately predicted the ENSO phase transition from cold to neutral in the tropical central-eastern Pacific and captures evolutions of the NAST and IOD indices in general. The system has also captured the main features of the summer WPSH and EASM indices in 2018, except that the predicted EASM is slightly weaker than the observed. Furthermore, CMMEv1.0 has also successfully predicted warmer air temperatures in northern China and captured the primary rainbelt over northern China, except that it predicted much more precipitation in the middle and lower reaches of the Yangtze River than observation.

Key words

multi-model ensemble China multi-model ensemble prediction system (CMME) real-time forecast skill assessment 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

The authors are grateful to the three anonymous reviewers for their insightful comments, which have helped improve the quality of the paper.

References

  1. Ashok, K., Z. Y. Guan, and T. Yamagata, 2001: Impact of the Indian Ocean dipole on the relationship between the Indian monsoon rainfall and ENSO. Geophys. Res. Lett., 28, 4499–4502, DOI:  https://doi.org/10.1029/2001GL013294.CrossRefGoogle Scholar
  2. Bao, Q., P. F. Lin, T. J. Zhou, et al., 2013: The flexible global ocean-atmosphere-land system model, spectral version 2: FGOALS-s2. Adv. Atmos. Sci., 30, 561–576, DOI:  https://doi.org/10.1007/s00376-012-2113-9.CrossRefGoogle Scholar
  3. Bao, Q., X. F. Wu, J. X. Li, et al., 2019: Outlook for El Niño and the Indian Ocean Dipole in autumn–winter 2018–2019. Chinese Sei. Bull., 64, 73–78, DOI:  https://doi.org/10.1360/N972018-00913. (in Chinese)CrossRefGoogle Scholar
  4. Becker, E., H. van den Dool, and Q. Zhang, 2014: Predictability and forecast skill in NMME. J. Climate, 27, 5891–5906, DOI:  https://doi.org/10.1175/JCLI-D-13-00597.1.CrossRefGoogle Scholar
  5. Behringer, D. W., and Y. Xue, 2004: Evaluation of the Global Ocean Data Assimilation System at NCEP: The Pacific Ocean. Proceedings of the Eighth Symposium on Integrated Observing and Assimilation System for Atmosphere, Ocean, and Land Surface, AMS 84th Annual Meeting, Seattle, Washington, USA, 11–15.Google Scholar
  6. Bengtsson, L., U. Schlese, E. Roeckner, et al., 1993: A two-tiered approach to long-range climate forecasting. Science, 261, 1026–1029, DOI:  https://doi.org/10.1126/science.261.5124.1026.CrossRefGoogle Scholar
  7. Birkert, C., R. Murtugudde, and T. Allan, 1999: Indian Ocean climate event brings floods to East Africa’s lakes and the Sudd Marsh. Geophys. Res. Lett., 26, 1031–1034, DOI:  https://doi.org/10.1029/1999GL900165.CrossRefGoogle Scholar
  8. Briegleb, B. P., C. M. Bitz, E. C. Hunke, et al., 2004: Scientific Description of the Sea Ice Component in the Community Climate System Model, Version 3. NCAR Tech Note NCAR/TN-463+ STR, NCAR, Boulder, CO, USA, 70 pp.Google Scholar
  9. Buizza, R., T. Petroliagis, T. Palmer, et al., 1998: Impact of model resolution and ensemble size on the performance of an ensemble prediction system. Quart. J. Roy. Meteor. Soc., 124, 1935–1960, DOI:  https://doi.org/10.1002/qj.49712455008.CrossRefGoogle Scholar
  10. Chen, W., 2002: Impacts of El Niño and La Nina on the cycle of the East Asian winter and summer monsoon. Chinese J. Atmos. Sci., 26, 595–610. (in Chinese)Google Scholar
  11. Davey, M., M. Huddleston, K. Sperber, et al., 2002: STOIC: A study of coupled model climatology and variability in tropical ocean regions. Climate Dyn., 18, 403–420, DOI:  https://doi.org/10.1007/s00382-001-0188-6.CrossRefGoogle Scholar
  12. Doblas-Reyes, F. J., R. Hagedorn, and T. N. Palmer, 2005: The rationale behind the success of multi-model ensembles in seasonal forecasting—II. Calibration and combination. Tellus A Dyn. Meteor. Oeeanogr., 57, 234–252, DOI:  https://doi.org/10.3402/tellusa.v57i3.14658.Google Scholar
  13. Feng, R., W. S. Duan, and M. Mu, 2014: The “winter predictability barrier” for IOD events and its error growth dynamics: Results from a fully coupled GCM. J. Geophys. Res. Oeeans, 119, 8688–8708, DOI:  https://doi.org/10.1002/2014JC010473.CrossRefGoogle Scholar
  14. Fischer, A. S., P. Terray, E. Guilyardi, et al., 2005: Two independent triggers for the Indian Ocean dipole/zonal mode in a coupled GCM. J. Climate, 18, 3428–3449, DOI:  https://doi.org/10.1175/JCLI3478.1.CrossRefGoogle Scholar
  15. Gitau, W., P. Camberlin, L. Ogallo, et al., 2015: Oceanic and atmospheric linkages with short rainfall season intraseasonal statistics over equatorial Eastern Africa and their predictive potential. Int. J. Climatol., 35, 23829–2399, DOI:  https://doi.org/10.1002/joc.4131.CrossRefGoogle Scholar
  16. Hagedorn, R., F. J. Doblas-Reyes, and T. N. Palmer, 2005: The rationale behind the success of multi-model ensembles in seasonal forecasting—I. Basic concept. Tellus A Dyn. Meteor. Oceanogr., 57, 219–233, DOI:  https://doi.org/10.3402/tellusa.v57i3.14657.Google Scholar
  17. Holland, M. M., D. A. Bailey, B. P. Briegleb, et al., 2012: Improved sea ice shortwave radiation physics in CCSM4: The impact of melt ponds and aerosols on Arctic Sea ice. J. Climate, 25, 1413–1430, DOI:  https://doi.org/10.1175/JCLI-D-11-00078.1.CrossRefGoogle Scholar
  18. Jia, X. L., L. J. Chen, Z. S. Gong, et al., 2011: Anomalies of ocean and atmospheric circulation in 2010 and their impacts on climate in China. Meteor. Mon., 37, 446–153. (in Chinese)Google Scholar
  19. Jiang, X. W., S. Yang, Y. Q. Li, et al., 2013a: Seasonal-to-interannual prediction of the Asian summer monsoon in the NCEP climate forecast system version 2. J. Climate, 26, 3708–3727, DOI:  https://doi.org/10.1175/JCLI-D-12-00437.1.CrossRefGoogle Scholar
  20. Jiang, X. W., S. Yang, J. P. Li, et al., 2013b: Variability of the Indian Ocean SST and its possible impact on summer western North Pacific anticyclone in the NCEP climate forecast system. Climate Dyn., 41, 2199–2212, DOI:  https://doi.org/10.1007/s00382-013-1934-2.CrossRefGoogle Scholar
  21. Kalnay, W., M. Kanamitsu, R. Kistler, et al., 1996: The NCEP/NCAR 40-year reanalysis project. Bull. Amer. Meteor. Soc., 77, 437–472, DOI:  https://doi.org/10.1175/1520-0477(1996)2.0.CO;2.CrossRefGoogle Scholar
  22. Kirtman, B. P., and D. Min, 2009: Multimodel ensemble ENSO prediction with CCSM and CFS. Mon. Wea. Rev., 137, 2908–2930, DOI:  https://doi.org/10.1175/2009MWR2672.1.CrossRefGoogle Scholar
  23. Kobayashi, S., Y. Ota, Y. Harada, et al., 2015: The JRA-55 reanalysis: General specifications and basic characteristics. J. Meteor. Soc. Japan, 93, 5–48.CrossRefGoogle Scholar
  24. Krishnamurti, T. N., C. M. Kishtawal, T. E. LaRow, et al., 1999: Improved weather and seasonal climate forecasts from multimodel superensemble. Science, 285, 1548–1550, DOI:  https://doi.org/10.1126/science.285.5433.1548.CrossRefGoogle Scholar
  25. Kug, J. S., J. Y. Lee, and I. S. Kang, 2008: Systematic error correction of dynamical seasonal prediction of sea surface temperature using a stepwise pattern project method. Mon. Wea. Rev., 136, 3501–3512, DOI:  https://doi.org/10.1175/2008MWR2272.1.CrossRefGoogle Scholar
  26. Latif, M., K. Sperber, J. Arblaster, et al., 2001: ENSIP: The El Nino simulation intercomparison project. Climate Dyn., 18, 255–276, DOI:  https://doi.org/10.1007/s003820100174.CrossRefGoogle Scholar
  27. Lavers, D., L. F. Luo, and E. F. Wood, 2009: A multiple model assessment of seasonal climate forecast skill for applications. Geophys. Res. Lett., 36, L23711, DOI:  https://doi.org/10.1029/2009GL041365.CrossRefGoogle Scholar
  28. Lawrence, D. M., K. W. Oleson, M. G. Flanner, et al., 2011: Parameterization improvements and functional and structural advances in version 4 of the Community Land Model. J. Adv. Model. Earth Syst., 3, M03001, DOI:  https://doi.org/10.1029/2011MS00045.Google Scholar
  29. Li, C. Y., 1990: Interaction between anomalous winter monsoon in East Asia and El Nino events. Adv. Atmos. Sci., 7, 36–46, DOI:  https://doi.org/10.1007/BF02919166.CrossRefGoogle Scholar
  30. Li, S. L., W. A. Robinson, and S. L. Peng, 2003: Influence of the North Atlantic SST tripole on northwest African rainfall. J. Geophys. Res. Atmos., 108, 4594, DOI:  https://doi.org/10.1029/2002JD003130.CrossRefGoogle Scholar
  31. Li, T., B. Wang, C. P. Chang, et al., 2003: A theory for the Indian Ocean dipole-zonal mode. J. Atmos. Sci., 60, 2119–2135, DOI:  https://doi.org/10.1175/1520-0469(2003)0602.0.CO;2.CrossRefGoogle Scholar
  32. Liu, H. L., Y. Q. Yu, W. Li, et al., 2004: Manual for LASG/IAP Climate System Ocean Model (LICOM1.0). Science Press, Beijing, 128 pp. (in Chinese).Google Scholar
  33. Liu, Y., and H.-L. Ren, 2017: Improving ENSO prediction in CFSv2 with an analogue-based correction method. Int. J. Climatol., 37, 5035–5046, DOI:  https://doi.org/10.1002/joc.5142.CrossRefGoogle Scholar
  34. Liu, Y. Y., W. J. Li, W. X. Ai, et al., 2012: Reconstruction and application of the monthly western Pacific subtropical high indices. J. Appl. Meteor. Sci., 23, 414–423, DOI:  https://doi.org/10.3969/j.issn.1001-7313.2012.04.004. (in Chinese)Google Scholar
  35. Lu, B., H.-L. Ren, R. Eade, et al., 2018: Indian Ocean SST modes and their impacts as simulated in BCC_CSM1.1(m) and HadGEM3. Adv. Atmos. Sci., 35, 1035–1048, DOI:  https://doi.org/10.1007/s00376-018-7279-3.CrossRefGoogle Scholar
  36. Luo, J. J., S. Masson, S. Behera, et al., 2007: Experimental forecasts of the Indian Ocean dipole using a coupled OAGCM. J. Climate, 20, 2178–2190, DOI:  https://doi.org/10.1175/JCLI4132.1.CrossRefGoogle Scholar
  37. Ma, J. H., and H. J. Wang, 2014: Design and testing of a global climate prediction system based on a coupled climate model. Sci. China Earth Sci., 57, 2417–2427, DOI:  https://doi.org/10.1007/s11430-014-4875-7.CrossRefGoogle Scholar
  38. Min, Y. M., V. N. Kryjov, and S. M. Oh, 2014: Assessment of AP-CC multimodel ensemble prediction in seasonal climate forecasting: Retrospective (1983–2003) and real-time forecasts (2008–2013). J. Geophys. Res. Atmos., 119, 12132–12150, DOI:  https://doi.org/10.1002/2014JD022230.CrossRefGoogle Scholar
  39. Molteni, F., T. Stockdale, M. Alonso-Balmaseda, et al., 2011: The New ECMWF Seasonal Forecast System (System 4). ECMWF Technical Memorandum 656, ECMWF, Reading, UK, 49 pp, DOI:  https://doi.org/10.21957/4nery093i.Google Scholar
  40. Oleson, K. W., Y. Dai, G. Bonan, et al., 2004: Technical Description of the Community Land Model (CLM). NCAR/TN-461+STR, NCAR, Boulder, CO, USA, 173 pp, DOI:  https://doi.org/10.5065/D6N877R0.Google Scholar
  41. Oleson, K. W., D. M. Lawrence, G. B. Bonan, et al., 2010: Technical Description of Version 4.0 of the Community Land Model (CLM). NCAR Technical Note NCAR/TN-478+STR, NCAR, Boulder, CO, USA, 257 pp, DOI:  https://doi.org/10.5065/D6FB50WZ.Google Scholar
  42. Palmer, T. N., Č. Branković, and D. S. Richardson, 2000: A probability and decision-model analysis of PROVOST seasonal multi-model ensemble integrations. Quart. J. Roy. Meteor. Soc., 126, 2013–2033, DOI:  https://doi.org/10.1002/qj.49712656703.CrossRefGoogle Scholar
  43. Peng, P. T., A. Kumar, H. van den Dool, et al., 2002: An analysis of multimodel ensemble predictions for seasonal climate anomalies. J. Geophys. Res. Atmos., 107, 4710, DOI:  https://doi.org/10.1029/2002JD002712.Google Scholar
  44. Ren, H. L., and J. F. Chou, 2006: Analogue correction method of errors by combining statistical and dynamical methods. Acta Meteor. Sinica., 20, 367–373.Google Scholar
  45. Ren, H. L., and J. F. Chou, 2007: Strategy and methodology of dynamical analogue prediction. Sci. China Earth Sci., 50, 1589–1599, DOI:  https://doi.org/10.1007/s11430-007-0109-6.CrossRefGoogle Scholar
  46. Ren, H.-L., and F.-F. Jin, 2011: Niño indices for two types of ENSO. Geophys. Res. Lett., 38, L04704, DOI:  https://doi.org/10.1029/2010GL046031.CrossRefGoogle Scholar
  47. Ren, H.-L., and F.-F. Jin, 2013: Recharge oscillator mechanisms in two types of ENSO. J. Climate, 26, 6506–6523, DOI:  https://doi.org/10.1175/JCLI-D-12-00601.1.CrossRefGoogle Scholar
  48. Ren, H.-L., F.-F. Jin, B. Tian, et al., 2016: Distinct persistence barriers in two types of ENSO. Geophys. Res. Lett., 43, 10973–10979, DOI:  https://doi.org/10.1002/2016GL071015.CrossRefGoogle Scholar
  49. Ren, H.-L., F.-F. Jin, L. C. Song, et al., 2017: Prediction of primary climate variability modes at the Beijing Climate Center. J. Meteor. Res., 31, 204–223, DOI:  https://doi.org/10.1007/s13351-017-6097-3.CrossRefGoogle Scholar
  50. Ren, H.-L., B. Lu, J. H. Wan, et al., 2018: Identification standard for ENSO events and its application to climate monitoring and prediction in China. J. Meteor. Res., 32, 923–936, DOI:  https://doi.org/10.1007/s13351-018-8078-6.CrossRefGoogle Scholar
  51. Ren, H.-L., A. A. Scaife, N. Dunstone, et al., 2019a: Seasonal predictability of winter ENSO types in operational dynamical model predictions. Climate Dyn., 3869–3890, DOI:  https://doi.org/10.1007/s00382-018-4366-1.
  52. Ren, H.-L., J. Q. Zuo, and Y. Deng, 2019b: Statistical predictability of Niño indices for two types of ENSO. Climate Dyn., 5361–5382, DOI:  https://doi.org/10.1007/s00382-018-4453-3.
  53. Reynolds, R. W., T. M. Smith, C. Y. Liu, et al., 2007: Daily high-resolution-blended analyses for sea surface temperature. J. Climate, 20, 5473–5496, DOI:  https://doi.org/10.1175/2007JCLI1824.1.CrossRefGoogle Scholar
  54. Saha, S., S. Nadiga, C. Thiaw, et al., 2006: The NCEP climate forecast system. J. Climate, 19, 3483–3517, DOI:  https://doi.org/10.1175/JCLI3812.1.CrossRefGoogle Scholar
  55. Saha, S., S. Moorthi, X. R. Wu, et al., 2014: The NCEP climate forecast system version 2. J. Climate, 27, 2185–2208, DOI:  https://doi.org/10.1175/JCLI-D-12-00823.1.CrossRefGoogle Scholar
  56. Saji, N. H., and T. Yamagata, 2003: Possible impacts of Indian Ocean dipole mode events on global climate. Climate Res., 25, 151–169, DOI:  https://doi.org/10.3354/cr025151.CrossRefGoogle Scholar
  57. Saji, N. H., B. N. Goswami, P. N. Vinayachandran, et al., 1999: A dipole mode in the tropical Indian Ocean. Nature, 401, 360–363, DOI:  https://doi.org/10.1038/43854.Google Scholar
  58. Schneider, E. K., B. P. Kirtman, D. G. DeWitt, et al., 2003: Retrospective ENSO forecasts: Sensitivity to atmospheric model and ocean resolution. Mon. Wea. Rev., 131, 3038–3060, DOI:  https://doi.org/10.1175/1520-0493(2003)1312.0.CO;2.CrossRefGoogle Scholar
  59. Shi, L., H. H. Hendon, O. Alves, et al., 2012: How predictable is the Indian Ocean dipole? Mon. Wea. Rev., 140, 3867–3884, DOI:  https://doi.org/10.1175/MWR-D-12-00001.1.CrossRefGoogle Scholar
  60. Tan, G. R., H.-L. Ren, H. S. Chen, et al., 2017: Detecting primary precursors of January surface air temperature anomalies in China. J. Meteor. Res., 31, 1096–1108, DOI:  https://doi.org/10.1007/s13351-017-7013-6.CrossRefGoogle Scholar
  61. Teixeira, J., and C. A. Reynolds, 2008: Stochastic nature of physical parameterizations in ensemble prediction: A stochastic convection approach. Mon. Wea. Rev., 136, 483–496, DOI:  https://doi.org/10.1175/2007MWR1870.1.CrossRefGoogle Scholar
  62. Wajsowicz, R. C., 2005: Potential predictability of tropical Indian Ocean SST anomalies. Geophys. Res. Lett., 32, L24702, DOI:  https://doi.org/10.1029/2005GL024169.CrossRefGoogle Scholar
  63. Wang, B., R. G. Wu, and X. H. Fu, 2000: Pacific-East Asian tele-connection: How does ENSO affect east Asian climate? J. Climate, 13, 1517–1536, DOI:  https://doi.org/10.1175/1520-0442(2000)0132.0.CO;2.CrossRefGoogle Scholar
  64. Wang, B., J.-Y. Lee, I.-S. Kang, et al., 2009: Advance and prospectus of seasonal prediction: Assessment of the APCC/CliPAS 14-model ensemble retrospective seasonal prediction (1980–2004). Climate Dyn., 33, 93–117, DOI:  https://doi.org/10.1007/s00382-008-0460-0.CrossRefGoogle Scholar
  65. Wang, H. J., K. Fan, J. Q. Sun, et al., 2015: A review of seasonal climate prediction research in China. Adv. Atmos. Sei., 32, 149–168, DOI:  https://doi.org/10.1007/s00376-014-0016-7.CrossRefGoogle Scholar
  66. Weisheimer, A., F. J. Doblas-Reyes, T. N. Palmer, et al., 2009: ENSEMBLES: A new multi-model ensemble for seasonal-to-annual predictions—Skill and progress beyond DEMETER in forecasting tropical Pacific SSTs. Geophys. Res. Lett., 36, L21711, DOI:  https://doi.org/10.1029/2009GL040896.CrossRefGoogle Scholar
  67. Weng, H. Y., K. Ashok, S. K. Behera, et al., 2007: Impacts of recent El Niño Modoki on dry/wet conditions in the Pacific Rim during boreal summer. Climate Dyn., 29, 113–129, DOI:  https://doi.org/10.1007/s00382-007-0234-0.CrossRefGoogle Scholar
  68. Weng, H. Y., S. K. Behera, and T. Yamagata, 2009: Anomalous winter climate conditions in the Pacific Rim during recent El Niño Modoki and El Niño events. Climate Dyn., 32, 663–674, DOI:  https://doi.org/10.1007/s00382-008-0394-6.CrossRefGoogle Scholar
  69. Wu, G. X., J. F. Chou, Y. M. Liu, et al., 2002: Dynamics of the Formation and Variation of Subtropical Anticyclones. Science Press, Beijing, 314 pp. (in Chinese)Google Scholar
  70. Wu, T. W., L. C. Song, W. P. Li, et al., 2014: An overview of BCC climate system model development and application for climate change studies. J. Meteor. Res., 28, 34–56, DOI:  https://doi.org/10.1007/s13351-014-3041-7.Google Scholar
  71. Xie, P. P., and P. A. Arkin, 1997: Global precipitation: A 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull. Amer. Meteor. Soc., 78, 2539–2558, DOI:  https://doi.org/10.1175/1520-0477(1977)0782.0.CO;2.CrossRefGoogle Scholar
  72. Yang, S., Z. Q. Zhang, V. E. Kousky, et al., 2008: Simulations and seasonal prediction of the Asian summer monsoon in the NCEP Climate Forecast System. J. Climate, 21, 3755–3775, DOI:  https://doi.org/10.1175/2008JCLI1961.1.CrossRefGoogle Scholar
  73. Yang, X., Z. Y. Guan, and B. L. Zhu, 2007: Role of Indian Ocean dipole events in the influence of ENSO on the summer rainfall and temperature in China. J. Nanjing Inst. Meteor., 30, 170–177, DOI:  https://doi.org/10.3969/j.issn.1674-7097.2007.02.004. (in Chinese)Google Scholar
  74. Yuan, Y., and S. Yang, 2012: Impacts of different types of El Niño on the East Asian climate: Focus on ENSO cycles. J. Climate, 25, 7702–7722, DOI:  https://doi.org/10.1175/JCLI-D-11-00576.1.CrossRefGoogle Scholar
  75. Zhang, Q. Y., S. Y. Tao, and L. T. Chen, 2003: The interannual variability of East Asian summer monsoon indices and its association with the pattern of general circulation over East Asia. Acta Meteor. Sinica, 61, 559–568, DOI:  https://doi.org/10.11676/qxxb2003.056. (in Chinese)CrossRefGoogle Scholar
  76. Zhang, R. H., A. Sumi, and M. Kimoto, 1996: Impact of El Niño on the East Asian monsoon: A diagnostic study of the ‘86/87 and ‘91/92 events. J. Meteor. Soc. Japan, 74, 49–62, DOI:  https://doi.org/10.2151/jmsj1965.74.1_49.CrossRefGoogle Scholar
  77. Zhang, W. J., F.-F. Jin, J. P. Li, et al., 2011: Contrasting impacts of two-type El Niño over the western North Pacific during boreal autumn. J. Meteor. Soc. Japan, 89, 563–569, DOI:  https://doi.org/10.2151/jmsj.2011-510.CrossRefGoogle Scholar
  78. Zhang, W. J., F.-F. Jin, H.-L. Ren, et al., 2012: Differences in tele-connection over the North Pacific and rainfall shift over the USA associated with two types of El Niño during boreal autumn. J. Meteor. Soc. Japan, 90, 535–552, DOI:  https://doi.org/10.2151/jmsj.2012-407.CrossRefGoogle Scholar
  79. Zuo, J. Q., W. J. Li, C. H. Sun, et al., 2013: Impact of the North Atlantic sea surface temperature tripole on the East Asian summer monsoon. Adv. Atmos. Sci., 30, 1173–1186, DOI:  https://doi.org/10.1007/s00376-012-2125-5.CrossRefGoogle Scholar

Copyright information

© The Chinese Meteorological Society and Springer-Verlag Berlin Heidelberg 2019

Authors and Affiliations

  • Hong-Li Ren
    • 1
    Email author
  • Yujie Wu
    • 1
  • Qing Bao
    • 2
  • Jiehua Ma
    • 3
  • Changzheng Liu
    • 1
  • Jianghua Wan
    • 1
  • Qiaoping Li
    • 4
  • Xiaofei Wu
    • 5
  • Ying Liu
    • 1
  • Ben Tian
    • 1
  • Joshua-Xiouhua Fu
    • 6
  • Jianqi Sun
    • 3
  1. 1.Laboratory for Climate Studies & China Meteorological Administration-Nanjing University Joint Laboratory for Climate Prediction Studies, National Climate CenterChina Meteorological AdministrationBeijingChina
  2. 2.State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric PhysicsChinese Academy of SciencesBeijingChina
  3. 3.Nansen-Zhu International Research Centre, Institute of Atmospheric PhysicsChinese Academy of SciencesBeijingChina
  4. 4.National Climate CenterChina Meteorological AdministrationBeijingChina
  5. 5.School of Atmospheric Sciences/Plateau Atmosphere and Environment Key Laboratory of Sichuan ProvinceChengdu University of Information TechnologyChengduChina
  6. 6.Institute of Atmospheric SciencesFudan UniversityShanghaiChina

Personalised recommendations