Advertisement

Journal of Meteorological Research

, Volume 33, Issue 2, pp 236–250 | Cite as

The Representativeness of Air Quality Monitoring Sites in the Urban Areas of a Mountainous City

  • Minjin Ma
  • Yue Chen
  • Fan DingEmail author
  • Zhaoxia Pu
  • Xudong Liang
Special Collection on Weather and Climate under Complex Terrain and Variable Land Surfaces: Observations and Numerical Simulations
  • 3 Downloads

Abstract

Lanzhou is a typical mountainous city with severe air pollution in northwestern China. This study uses hourly observational data of air pollutants at five air quality monitoring sites in Lanzhou from July to December 2015 to discuss data quality control and the representativeness of the monitoring sites (four urban sites and one suburban site). A fuzzy matrix is applied to study primary air pollutants. The results show that of the six routinely monitored pollutants, the primary pollutant is PM10 during the study period. Based on lag correlation analysis and one-way analysis of variance, it is concluded that there are redundant observations at the four urban sites for the timely diffusion and transport of air pollutants from the same general area. The coefficient of divergence (COD) method is then used to evaluate the spatial distribution differences, and the primary air pollutant PM10 shows differences at each site. COD can be used as a positive indicator to describe site representativeness. To evaluate the overall air pollution in the valley, correlation analysis is performed between the PM10 concentration retrieved from aerosol optical depth satellite data and the concentration from the four urban monitoring sites. Among these, the correlation between the workers’ hospital site data and the retrieval data is the highest, passing the 90% confidence level. A new representative evaluation model for air quality monitoring sites, RS = 0.77COD + 0.23Rretrieval, is established by using COD and correlation coefficients between routine observations and satellite retrieval products. From this model, it can be concluded that the biological products institute site in Lanzhou is the most representative site for the evaluation of air pollution out of the four urban air quality monitoring sites from July to December 2015.

Key words

mountainous cities air quality monitoring site representativeness 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

Many thanks are given to website data.epmap.org for the supply of research data. Anonymous reviewers who provided comments and suggestions are also gratefully acknowledged.

References

  1. Chan, C. C., and J. S. Hwang, 1996: Site representativeness of urban air monitoring stations. J. Air Waste Manage. Assoc., 46, 755–760, doi: 10.1080/10473289.1996.10467510.CrossRefGoogle Scholar
  2. Chan, C. K., and X. H. Yao, 2008: Air pollution in mega cities in China. Atmos. Environ., 42, 1–42, doi: 10.1016/j.atmosenv.2007.09.003.CrossRefGoogle Scholar
  3. Chen, J. L., J. Wen, and H. Tian, 2016: Up-scaling research for soil moisture in Yellow River source region. Plateau Meteor, 35, 1212–1223, doi: 10.7522/j.issn.l000-0534.2015.00100. (in Chinese)Google Scholar
  4. Chen, L. H., Y. Yu, J. B. Chen, et al., 2010: Characteristics of main air pollution in Lanzhou during 2001–2007. Plateau Meteor, 29, 1627–1633. (in Chinese)Google Scholar
  5. Chen, Y., J. Z. Sun, W. Zhang, et al., 2013: Research on the correlation between MODIS aerosol optical depth and air pollution index over Lanzhou area. J. Lanzhou Univ. (Nat. Sci.), 49, 765–772, doi: 10.13885/j.issn.0455-2059.2013.06.004. (in Chinese)Google Scholar
  6. Cheng, H. X., 2014: Study on the correlation between the MODIS AOD and the concentration of PM10 in Hebei Province. Master dissertation, Hebei Normal University, Shijiazhuang, 49 pp. (in Chinese)Google Scholar
  7. Cheng, Q. Y., 2010: Structure entropy weight method to confirm the weight of evaluating index. Syst. Eng.—Theory Pract., 30, 1225–1228. (in Chinese)Google Scholar
  8. Ding, H., Y. H. Liu, and S. X. Cao, 2013: Research on assessment of urban air quality based on fuzzy-grey clustering method. Environ. Sci. Technol., 36, 374–379. (in Chinese)Google Scholar
  9. Gao, G. G., 2003: Research on index weight determination and score conversion method in comprehensive evaluation of multiple indexes. China Economist, 3, 265–266, doi: 10.3969/j.issn.l004-4914.2003.03.178. (in Chinese)Google Scholar
  10. Gao, H. W., J. L. Chen, and J. Chen, 2014: Regional distributions of air pollution index in major cities of China. Period. Ocean Univ. China, 44, 25–34, doi: 10.16441/j.cnki.hdxb.2014.10.004. (in Chinese)Google Scholar
  11. Hu, Y. Q., and Q. Zhang, 1999: Atmosphere pollution mechanism along with prevention and cure countermeasure of the Lanzhou hollow basin. China Environ. Sci., 2, 119–122, doi: 10.3321/j.issn:1000-6923.1999.02.006. (in Chinese)Google Scholar
  12. Huang, D. X., 2003: Means of weights allocation with multi-factors based on impersonal message entropy. Syst. Eng. —Theory Methodol. Appl., 12, 321–324, doi: 10.3969/j.issn.1005-2542.2003.04.008. (in Chinese)Google Scholar
  13. Kong, L. B., and L. Kong, 2017: Analysis of the “three-character” principle of surface meteorological observation. Mod. Agric. Sci. Technol., 16, 167–168. (in Chinese)Google Scholar
  14. Liu, H. N., W. L. Ma, J. L. Qian, et al., 2015: Effect of urbanization on the urban meteorology and air pollution in Hangzhou. J. Meteor. Res., 29, 950–965, doi: 10.1007/sl3351-015-5013-y.CrossRefGoogle Scholar
  15. Liu, J., S. J. Fan, L. Zhang, et al., 2006: Analysis on the pollution characteristics of atmospheric particle in Lanzhou City in winter. J. Lanzhou Univ. (Nat. Sci.), 42, 45–49, doi: 10.3321/j.issn:0455-2059.2006.06.009. (in Chinese)Google Scholar
  16. Liu, N., Y. Yu, J. B. Chen, et al., 2012: A study on potential sources and transportation pathways of PM10 in spring in Lanzhou. Trans. Atmos. Sci., 35, 477–486, doi: 10.3969/j.issn.1674-7097.2012.04.011. (in Chinese)Google Scholar
  17. Liu, Y. Z., R. Jia, T. Dai, et al., 2014: A review of aerosol optical properties and radiative effects. J. Meteor. Res., 28, 1003–1028, doi: 10.1007/s13351-014-4045-z.CrossRefGoogle Scholar
  18. Ni, S. K., 2002: Comparison of seven methods for determining weights of evaluation indicators. South China J. Prev. Med., 28, 54–55, doi: 10.3969/j.issn.1671-5039.2002.06.022. (in Chinese)Google Scholar
  19. Ott, W., and R. Eliassen, 1973: A survey technique for determining the representativeness of urban air monitoring stations with respect to carbon monoxide. J. Air Pollut. Control Assoc., 23, 685–690, doi: 10.1080/00022470.1973.10469827.CrossRefGoogle Scholar
  20. Ren, Z. Y., and H. H. Li, 1978: Influence of inversion temperature on city from Lanzhou air pollution. City Planning Rev., 5, 35–38. (in Chinese)Google Scholar
  21. Shannon, C. E., 1948: A mathematical theory of communication. Bell Syst. Tech. J., 27, 379–423, doi: 10.1002/bltj.l948.27.issue-3.CrossRefGoogle Scholar
  22. Shannon, C. E., and W. Weaver, 1949: The Mathematical Theory of Communication. University of Illinois Press, Urbana, Ill, 623–656.Google Scholar
  23. Shi, J. K., 1980: A statistical model on air pollution effected by meteorological factors of boundary layer in Lanzhou City. J. Lanzhou Univ., 2, 103–111, doi: 10.13885/j.issn.0455-2059. 1980.02.011. (in Chinese)Google Scholar
  24. Tang, X. Y., J. L. Li, W. Li, et al, 1984: Photochemical oxidants in atmospheric environmental quality standards. Environ. Sci. China, 4, 67–72. (in Chinese)Google Scholar
  25. Tao, J. H., Y. X. Huang, and D. R. Lu, 2007: Influence of sand-dust activities in Hexi Corridor on PM10 concentration in Lanzhou and its assessment. J. Desert Res., 27, 672–676, doi: 10.3321/j.issn:1000-694X.2007.04.025. (in Chinese)Google Scholar
  26. Wang, H., L. Chen, K. Chen, et al., 2007: Multi-index comprehensive evaluation method and selection of weight coefficient. J. Guangdong College Pharm., 23, 583–589, doi: 10.3969/j.issn.l006-8783.2007.05.034. (in Chinese)Google Scholar
  27. Wang, J., and J. S. Zhang, 2001: Comparing several methods of Assuring weight vector in synthetical evaluation. J. Hebei Univ. Technol., 30, 52–57, doi: 10.3969/j.issn.1007-2373.2001.02.012. (in Chinese)Google Scholar
  28. Wang, K., and H. Z. Song, 2003: A comparative analysis of three kinds of objective weighting methods. Technoeconomics & Management Research, 6, 48–49, doi: 10.3969/j.issn.1004-292X.2003.06.022. (in Chinese)Google Scholar
  29. Wang, S. G., D. B. Yang, and C. H. Chen, 1994: An analysis and comparison on time-space changing regularity of air pollutant concentration in different season in Lanzhou. J. Lanzhou Univ. (Nat. Sci.), 30, 150–155, doi: 10.13885/j.issn.0455-2059.1994.03.030. (in Chinese)Google Scholar
  30. Wang, Y. Y., G. C. Li, W. B. Min, et al, 2014: Representativeness analysis of meteorological stations based on temperature estimated from MODIS data. Meteor. Mon., 40, 373–380, doi: 10.7519/j.issn.l000-0526.2014.03.013. (in Chinese)Google Scholar
  31. Wang, Z. W., S. Q. Yang, Q. L. Zeng, et al., 2017: Retrieval of aerosol optical depth for Chongqing using the HJ-1 satellite data. J. Meteor. Res., 31, 586–596, doi: 10.1007/s13351-017-6102-x.CrossRefGoogle Scholar
  32. Wei, Y. M., F. Pan, J. Wang, et al., 2006: Relationship of severe TSP pollution and natural dustfall in Lanzhou City. J. Desert Res., 26, 763–766, doi: 10.3321/j.issn:1000-694X.2006.05.017. (in Chinese)Google Scholar
  33. Wu, Y. N., and Y. Wang, 2012: Suggestion on improving accuracy of air quality index. Environ. Sci. Manage., 37, 125–128, doi: 10.3969/j.issn.l673-1212.2012.08.033. (in Chinese)Google Scholar
  34. Xie, X. J., J. Li, and Z. F. Wang, 2010: Numerical simulation of diurnal variations of the air pollutants in winter of Lanzhou City. Climatic Environ. Res., 15, 695–703, doi: 10.3878/j.issn.1006-9585.2010.05.20. (in Chinese)Google Scholar
  35. Yang, L. P., and F. H. Chen, 2002: Study on the source apportionment of atmospheric dust pollutants in Lanzhou. Acta Scientiae Circumstantiae, 22, 499–502, doi: 10.3321/j.issn:0253-2468. 2002.04.017. (in Chinese)Google Scholar
  36. Yang, X., and X. S. Li, 1999: A numerical study of photochemical reaction mechanism of ozone variation in surface layer. Sci. Atomos. Sinica, 23, 427–438, doi: 10.3878/j.issn.1006-9895.1999.04.06. (in Chinese)Google Scholar
  37. Yu, G. H., L. L. Li, Z. G. Li, et al., 2010: Taiyuan main air pollutant appraisal analysis and forecast. Environ. Sci. Manage., 35, 171–174. (in Chinese)Google Scholar
  38. Yu, Y., D. S. Xia, L. H. Chen, et al., 2010: Analysis of particulate pollution characteristics and its causes in Lanzhou, Northwest China. Chinese J. Environ. Sci., 31, 22–28. (in Chinese)Google Scholar
  39. Yu, Y. J., Q. Wang, Y. P. Zhang, et al., 2012: Environment and health risk assessment of primary air pollutants in Lanzhou City. Res. Environ. Sci., 25, 751–756, doi: 10.13198/j.res.2012.07.24.yuyj.008. (in Chinese)Google Scholar
  40. Yuan, B., S. L. Xiao, and D. H. Jiang, 2009: Air pollution of city clusters in China and its characteristics on seasonal changes. Environ. Sci. Technol., 22, 102–106, doi: 10.3969/j.issn.1674-4829.2009.z1.037. (in Chinese)Google Scholar
  41. Zhai, G. Y., S. G. Wang, J. Y. Dong, et al., 2015: Lanzhou different diameter grain of atmospheric particulate matter pollution characteristics and the influence of meteorological factor analysis. Ecol. Environ. Sci., 24, 70–75, doi: 10.16258/j.cnki.1674-5906.2015.01.011. (in Chinese)Google Scholar
  42. Zhang, H. E., M. Q. Ma, and X. Wang, 2017: Fuzzy evaluation of environmental air quality in the main area of Lanzhou city in 2001–2015. J. Arid Land Resour. Environ., 31, 117–122, doi: 10.13448/j.cnki.jalre.2017.389. (in Chinese)Google Scholar
  43. Zhang, Q., 2001: The influence of terrain and inversion layer on pollutant transfer over Lanzhou City. China Environ. Sci., 21, 230–234, doi: 10.3321/j.issn:1000-6923.2001.03.009. (in Chinese)Google Scholar
  44. Zhang, S., M. Zhang, and G. T. Chi, 2010: The science and technology evaluation model based on entropy weight and empirical research during the 10th Five-Year of China. Chinese J. Manage., 7, 34–42, doi: 10.3969/j.issn.1672-884X.2010.01.007. (in Chinese)Google Scholar
  45. Zhao, J. G., S. G. Wang, T. Y. Zhang, et al., 2015: The analysis of meteorological factors causing heavy air pollution in Lanzhou. Acta Scientiae Circumstantiae, 35, 1547–1555, doi: 10.13671/j.hjkxxb.2014.0829. (in Chinese)Google Scholar
  46. Zheng, Y., H. Z. Che, L. K. Yang, et al, 2017: Optical and radiative properties of aerosols during a severe haze episode over the North China Plain in December 2016. J. Meteor. Res., 31, 1045–1061, doi: 10.1007/s13351-017-7073-7.CrossRefGoogle Scholar
  47. Zhong, L. J., J. Y. Zheng, G. Q. Lei, et al., 2007: Analysis of current status and trends of air quality monitoring networks. Environ. Monit. China, 23, 113–118, doi: 10.3969/j.issn.1002-6002.2007.02.029. (in Chinese)Google Scholar

Copyright information

© The Chinese Meteorological Society and Springer-Verlag Berlin Heidelberg 2019

Authors and Affiliations

  • Minjin Ma
    • 1
  • Yue Chen
    • 1
  • Fan Ding
    • 2
    Email author
  • Zhaoxia Pu
    • 3
  • Xudong Liang
    • 4
  1. 1.College of Atmospheric SciencesLanzhou UniversityLanzhouChina
  2. 2.College of Computer and CommunicationLanzhou University of TechnologyLanzhouChina
  3. 3.Department of Atmospheric SciencesUniversity of UtahSalt Lake CityUSA
  4. 4.State Key Laboratory of Severe WeatherChinese Academy of Meteorological SciencesBeijingChina

Personalised recommendations