Advertisement

Journal of Meteorological Research

, Volume 33, Issue 4, pp 777–783 | Cite as

Uncertainties in the Effects of Climate Change on Maize Yield Simulation in Jilin Province: A Case Study

  • Yanxia Zhao
  • Chunyi Wang
  • Yi ZhangEmail author
Regular Atricle
  • 9 Downloads

Abstract

Measuring the impacts of uncertainties identified from different global climate models (GCMs), representative concentration pathways (RCPs), and parameters of statistical crop models on the projected effects of climate change on crop yields can help to improve the availability of simulation results. The quantification and separation of different sources of uncertainty also help to improve understanding of impacts of uncertainties and provide a theoretical basis for their reduction. In this study, uncertainties of maize yield predictions are evaluated by using 30 sets of parameters from statistical crop models together with eight GCMs with reference to three emission scenarios for Jilin Province of northeastern China. Regression models using replicates based on bootstrap resampling reveal that yields are maximized when the optimum average growing season temperature is 20.1°C for 1990–2009. The results of multi-model ensemble simulations show a maize yield reduction of 11%, with 75% probability for 2040–69 relative to the baseline period of 1976–2005. We decompose the variance so as to understand the relative importance of different sources of uncertainty, such as GCMs, RCPs, and statistical model parameters. The greatest proportion of uncertainty (> 50%) is derived from GCMs, followed by RCPs with a proportion of 28% and statistical crop model parameters with a proportion of 20% of total ensemble uncertainty.

Key words

analysis of variance (ANOVA) climate change ensemble simulation maize yield uncertainty 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aryal, A., S. Shrestha, and M. S. Babel, 2019: Quantifying the sources of uncertainty in an ensemble of hydrological climate-impact projections. Theor. Appl. Climatol., 135, 193–209, doi:  https://doi.org/10.1007/s00704-017-2359-3.CrossRefGoogle Scholar
  2. Asseng, S., F. Ewert, C. Rosenzweig, et al., 2013: Uncertainty in simulating wheat yields under climate change. Nat. Climate Change, 3, 827–832, doi:  https://doi.org/10.1038/nclimate1916.CrossRefGoogle Scholar
  3. Asseng, S., F. Ewert, P. Martre, et al., 2015: Rising temperatures reduce global wheat production. Nat. Climate Change, 5, 143–147, doi:  https://doi.org/10.1038/nclimate2470.CrossRefGoogle Scholar
  4. Bassu, S., N. Brisson, J.-L. Durand, et al., 2014: How do various maize crop models vary in their responses to climate change factors? Glob. Change Biol., 20, 2301–2320, doi:  https://doi.org/10.1111/gcb.12520.CrossRefGoogle Scholar
  5. Bosshard, T., M. Carambia, K. Goergen, et al., 2013: Quantifying uncertainty sources in an ensemble of hydrological climate-impact projections. Water Resour. Res., 49, 1523–1536, doi:  https://doi.org/10.1029/2011wr011533.CrossRefGoogle Scholar
  6. Cao T.-H., X.-H. Liang, Y.-J. Liu, et al., 2010: Influence of climate change on meteorological yield of maize in Jilin Province. J. Maize Sci., 18, 142–145, doi:  https://doi.org/10.13597/j.cnki.maize.science.2010.02.034. (in Chinese)Google Scholar
  7. Ceglar, A., and L. Kajfež-Bogataj, 2012: Simulation of maize yield in current and changed climatic conditions: Addressing modelling uncertainties and the importance of bias correction in climate model simulations. Eur. J. Agron., 37, 83–95, doi:  https://doi.org/10.1016/j.eja.2011.11.005.CrossRefGoogle Scholar
  8. Challinor, A. J., J. Watson, D. B. Lobell, et al., 2014: A meta-analysis of crop yield under climate change and adaptation. Nat. Climate Change, 4, 287–291, doi:  https://doi.org/10.1038/nclimate2153.CrossRefGoogle Scholar
  9. Dosio, A., and P. Paruolo, 2011: Bias correction of the ENSEMBLES high-resolution climate change projections for use by impact models: Evaluation on the present climate. J. Geophys. Res. Atmos., 116, D17110, doi:  https://doi.org/10.1029/2011JD015934.CrossRefGoogle Scholar
  10. Godfray, H. C. J., J. R. Beddington, I. R. Crute, et al., 2010: Food security: The challenge of feeding 9 billion people. Science, 327, 812–818, doi:  https://doi.org/10.1126/science.1185383.CrossRefGoogle Scholar
  11. He, D., E. L. Wang, J. Wang, et al., 2017: Uncertainty in canola phenology modelling induced by cultivar parameterization and its impact on simulated yield. Agric. For. Meteor., 232, 163–175, doi:  https://doi.org/10.1016/j.agrformet.2016.08.013.CrossRefGoogle Scholar
  12. Holzkämper, A., P. Calanca, M. Honti, et al., 2015a: Projecting climate change impacts on grain maize based on three different crop model approaches. Agric. For. Meteor., 214–215, 219–230, doi:  https://doi.org/10.1016/j.agrformet.2015.08.263.CrossRefGoogle Scholar
  13. Holzkämper, A., T. Klein, R. Seppelt, et al., 2015b: Assessing the propagation of uncertainties in multi-objective optimization for agro-ecosystem adaptation to climate change. Environ. Modell. Softw., 66, 27–35, doi:  https://doi.org/10.1016/j.ensoft.2014.12.012.CrossRefGoogle Scholar
  14. Li H., F. M. Yao, J. H. Zhang, et al., 2014: Analysis on climatic maize yield and its sensitivity to climate change in northeast China. Chinese J. Agrometeorol., 35, 423–428, doi:  https://doi.org/10.3969/j.issn.1000-6362.2014.04.010. (in Chinese)Google Scholar
  15. Li, R. Q., S. H. Lyu, B. Han, et al., 2015: Connections between the South Asian summer monsoon and the tropical sea surface temperature in CMIP5. J. Meteor. Res., 29, 106–118, doi:  https://doi.org/10.1007/s13351-014-4031-5.CrossRefGoogle Scholar
  16. Li, T., T. Hasegawa, X. Y. Yin, et al., 2015: Uncertainties in predicting rice yield by current crop models under a wide range of climatic conditions. Global Change Biol., 21, 1328–1341, doi:  https://doi.org/10.1111/gcb.12758.CrossRefGoogle Scholar
  17. Liu, B., S. Asseng, C. Müller, et al., 2016: Similar estimates of temperature impacts on global wheat yield by three independent methods. Nat. Climate Change, 6, 1130–1136, doi:  https://doi.org/10.1038/nclimate3115.CrossRefGoogle Scholar
  18. Liu, D. L., G. J. O’Leary, B. Christy, et al., 2017: Effects of different climate downscaling methods on the assessment of climate change impacts on wheat cropping systems. Climatic Change, 144, 687–701, doi:  https://doi.org/10.1007/s10584-017-2054-5.CrossRefGoogle Scholar
  19. Lobell, D. B., and M. B. Burke, 2010: On the use of statistical models to predict crop yield responses to climate change. Agric. For. Meteor., 150, 1443–1452, doi:  https://doi.org/10.1016/j.agrformet2010.07.008.CrossRefGoogle Scholar
  20. Lobell, D. B., C. B. Field, K. N. Cahill, et al., 2006: Impacts of future climate change on California perennial crop yields: Model projections with climate and crop uncertainties. Agrie. For. Meteor., 141, 208–218, doi:  https://doi.org/10.1016/j.ggrformet.2066.10.006.CrossRefGoogle Scholar
  21. Okoro, S. U., U. Schickhoff, J. Boehner, et al., 2017: Climate impacts on palm oil yields in the Nigerian Niger Delta. Eur. J. Agron., 85, 38–50, doi:  https://doi.org/10.1016/j.eja.2017.02.002.CrossRefGoogle Scholar
  22. Schlenker, W., and D. B. Lobell, 2010: Robust negative impacts of climate change on African agriculture. Environ. Res. Lett., 5, 014010, doi:  https://doi.org/10.1088/1748-9326/5/1/014010.CrossRefGoogle Scholar
  23. Shi, W. J., F. L. Tao, Z. Zhang, 2012: Identifying contributions of climate change to crop yields based on statistical models: A review. Aeta Geogr. Siniea, 67, 1213–1222, doi:  https://doi.org/10.11821/xb201209006. (in Chinese)Google Scholar
  24. Tack, J., A. Barkley, and L. L. Nalley, 2015: Effect of warming temperatures on US wheat yields. Proc. Natl. Acad. Sci. USA, 112, 6931–6936, doi:  https://doi.org/10.1073/pnas.1415181112.CrossRefGoogle Scholar
  25. Tao, F. L., and Z. Zhang, 2013: Climate change, wheat productivity and water use in the North China Plain: A new super-ensemble-based probabilistic projection. Agric. For. Meteor., 170, 146–165, doi:  https://doi.org/10.1016/j.agrformet.2011.10.003.CrossRefGoogle Scholar
  26. Tao, F. L., Z. Zhang, J. Y. Liu, et al., 2009: Modelling the impacts of weather and climate variability on crop productivity over a large area: A new super-ensemble-based probabilistic projection. Agric. For. Meteor., 149, 1266–1278, doi:  https://doi.org/10.1016/j.agr-formet.2009.02.015.CrossRefGoogle Scholar
  27. Tao, F. L., Z. Zhang, W. J. Shi, et al., 2013: Single rice growth period was prolonged by cultivars shifts, but yield was damaged by climate change during 1981–2009 in China, and late rice was just opposite. Glob. Change Biol., 19, 3200–3209, doi:  https://doi.org/10.1111/gcb.12250.CrossRefGoogle Scholar
  28. Tao, F. L., R. P. Rötter, T. Palosuo, et al., 2018: Contribution of crop model structure, parameters and climate projections to uncertainty in climate change impact assessments. Glob. Change Biol, 24, 1291–1307, doi:  https://doi.org/10.1111/gcb.14019.CrossRefGoogle Scholar
  29. Vetter, T., J. Reinhardt, M. Flörke, et al., 2017: Evaluation of sources of uncertainty in projected hydrological changes under climate change in 12 large-scale river basins. Climatic Change, 141, 419–433, doi:  https://doi.org/10.1007/s10584-016-1794-y.CrossRefGoogle Scholar
  30. Wallach, D., L. O. Mearns, A. C. Ruane, et al., 2016: Lessons from climate modeling on the design and use of ensembles for crop modeling. Climatic Change, 139, 551–564, doi:  https://doi.org/10.1007/s10584-016-1803-1.CrossRefGoogle Scholar
  31. Wang, B., D. L. Liu, C. Waters, et al., 2018: Quantifying sources of uncertainty in projected wheat yield changes under climate change in eastern Australia. Climatie Change, 151, 259–273, doi:  https://doi.org/10.1007/s10584-018-2306-z.CrossRefGoogle Scholar
  32. Wang, E. L., P. Martre, Z. G. Zhao, et al., 2017: The uncertainty of crop yield projections is reduced by improved temperature response functions. Nat. Plants, 3, 17102, doi:  https://doi.org/10.1038/nplants.2017.102.CrossRefGoogle Scholar
  33. Wang, N., J. Wang, E. L. Wang, et al., 2015: Increased uncertainty in simulated maize phenology with more frequent supra-optimal temperature under climate warming. Eur. J. Agron., 71, 19–33, doi:  https://doi.org/10.1016/j.eja.2015.08.005.CrossRefGoogle Scholar
  34. White, J. W., G. Hoogenboom, B. A. Kimball, et al., 2011: Methodologies for simulating impacts of climate change on crop production. Field Crops Res., 124, 357–368, doi:  https://doi.org/10.1016/j.fcr.2011.07.001.CrossRefGoogle Scholar
  35. Wilby, R. L., J. Troni, Y. Biot, et al., 2009: A review of climate risk information for adaptation and development planning. Int. J. Climatol., 29, 1193–1215, doi:  https://doi.org/10.1002/joc.1839.CrossRefGoogle Scholar
  36. Wu, D., Z. H. Jiang, and T. T. Ma, 2016: Projection of summer precipitation over the Yangtze-Huaihe River basin using multimodel statistical downscaling based on canonical correlation analysis. J. Meteor. Res., 30, 867–880, doi: https://doi.org/10.1007/s13351-016-6030-1.CrossRefGoogle Scholar
  37. Yang, X., Z. Tian, L. X. Sun, et al., 2017: The impacts of increased heat stress events on wheat yield under climate change in China. Climatie Change, 140, 605–620, doi:  https://doi.org/10.1007/s10584-016-1866-z.CrossRefGoogle Scholar
  38. Zhang, T. Y., J. Zhu, and R. Wassmann, 2010: Responses of rice yields to recent climate change in China: An empirical assessment based on long-term observations at different spatial scales (1981–2005). Agric. For. Meteor., 150, 1128–1137, doi:  https://doi.org/10.1016/j.agrformet.2010.04.013.CrossRefGoogle Scholar
  39. Zhang, Y., Y. X. Zhao, S. N. Chen, et al., 2015: Prediction of maize yield response to climate change with climate and crop model uncertainties. J. Appl. Meteor. Climatol., 54, 785–794, doi:  https://doi.org/10.1175/jamc-d-14-0147.1.CrossRefGoogle Scholar
  40. Zhang, Y., Y. X. Zhao, C. Y. Wang, et al., 2017: Using statistical model to simulate the impact of climate change on maize yield with climate and crop uncertainties. Theor. Appl. Climatol., 130, 1065–1071, doi:  https://doi.org/10.1007/s00704-016-1935-2.CrossRefGoogle Scholar
  41. Zhou, M. Z., and H. J. Wang, 2015: Potential impact of future climate change on crop yield in northeastern China. Adv. Atmos. Sci., 32, 889–897, doi:  https://doi.org/10.1007/s00376-014-4161-9.CrossRefGoogle Scholar
  42. Zhou, M. Z., H. J. Wang, and Z. G. Huo, 2017: A new prediction model for grain yield in Northeast China based on spring North Atlantic Oscillation and late-winter Bering Sea ice cover. J. Meteor. Res., 31, 409–419, doi:  https://doi.org/10.1007/s13351-017-6114-6.CrossRefGoogle Scholar

Copyright information

© The Chinese Meteorological Society and Springer-Verlag Berlin Heidelberg 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Severe WeatherChinese Academy of Meteorological Sciences, China Meteorological AdministrationBeijingChina

Personalised recommendations