Journal of Meteorological Research

, Volume 33, Issue 2, pp 264–275 | Cite as

Influences of Physical Processes and Parameters on Simulations of TOA Radiance at UV Wavelengths: Implications for Satellite UV Instrument Validation

  • Shouguo Ding
  • Fuzhong WengEmail author
Regular Articles


Numerous factors can influence the radiative transfer simulation of hyper-spectral ultraviolet satellite observation, including the radiative transfer scheme, gaseous absorption coefficients, Rayleigh scattering scheme, surface reflectance, aerosol scattering, band center wavelength shifts of sensor, and accuracy of input profiles. In this study, a Unified Linearized Vector Radiative Transfer Model (UNL-VRTM) is used to understand the influences of various factors on the top of atmosphere (TOA) normalized radiance in the ultraviolet (UV) region. A benchmark test for Rayleigh scattering is first performed to verify the UNL-VRTM accuracy, showing that the model performances agree well with earlier peer-reviewed results. Sensitivity experiments show that a scalar radiative transfer approximation considering only ozone and a constant surface reflectance within the UV region may cause significant errors to the TOA normalized radiance. A comparison of the Ozone Mapping and Profiler Suite (OMPS) radiances between simulations and observations shows that the surface reflectance strongly influences the accuracy for the wavelengths larger than 340 nm. Thus, using the surface reflectivity at 331 nm as a proxy for simulating the whole OMPS hyperspectral ultraviolet radiances is problematic. The impact of rotational Raman scattering on TOA radiance can be simulated through using SCIATRAN, which can also reduce the difference between measurements and simulations to some extent. Overall, the differences between OMPS simulations and observations can be less than 3% for the entire wavelengths. The bias is nearly constant across the cross-track direction.

Key words

ultraviolet instrument vector radiative transfer simulation radiance validation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adams, C. N., and G. W. Kattawar, 1970: Solutions of the equations of radiative transfer by an invariant imbedding approach. J. Quant. Spectrosc. Radiat. Transfer, 10, 341–356, doi: 10.1016/0022-4073(70)90101-9.CrossRefGoogle Scholar
  2. Baldridge, A. M., S. J. Hook, C. I. Grove, et al., 2009: The ASTER spectral library version 2.0. Remote Sens. Environ., 113, 711–715, doi: 10.1016/j.rse.2008.11.007.CrossRefGoogle Scholar
  3. Bass, A. M., and R. J. Paur, 1985: The ultraviolet cross-sections of ozone: I. The measurements. Atmospheric Ozone, C. S. Zerefos, and A. Ghazi, Eds., Springer, Dordrecht, 606–610, doi: 10.1007/978-94-009-5313-0_120.CrossRefGoogle Scholar
  4. Bodhaine, B. A., N. B. Wood, E. G. Dutton, et al., 1999: On Rayleigh optical depth calculations. J. Atmos. Oceanic Technol., 16, 1854–1861, doi: 10.1175/1520-0426(1999)016<1854:ORODC>2.0.CO;2.CrossRefGoogle Scholar
  5. Bovensmann H., J. P. Burrows, M. Buchwitz, 1999: SCIAMACHY—Mission objectives and measurement modes. J. Atmos. Sci., 56, 127–150, doi: 10.1175/1520-0469(1999)056<0127:SMOAMM>2.0.CO;2.CrossRefGoogle Scholar
  6. Burrows, J. P., M. Weber, M. Buchwitz, et al., 1999: The Global Ozone Monitoring Experiment (GOME): Mission concept and first scientific results. J. Atmos. Sci., 56, 151–175, doi: 10.1175/1520-0469(1999)056<0151:TGOMEG>2.0.CO;2.CrossRefGoogle Scholar
  7. Callies, J., E. Corpaccioli, M. Eisinger, et al., 2000: GOME-2-Metop’s second-generation sensor for operational ozone monitoring. ESA Bulletin, 102, 28–36.Google Scholar
  8. Chandrasekhar, S., 1960: Radiative Transfer. Dover Publishing, Inc., New York, 415 pp.Google Scholar
  9. Cockell, C. S., and A. R. Blaustein, 2013: Ecosystems, Evolution, and Ultraviolet Radiation. Springer, New York, 222 pp.Google Scholar
  10. Coulson, K. L., and D. W. Reynolds, 1971: The spectral reflectance of natural surfaces. J. Appl. Meteor., 10, 1285–1295, doi: 10.1175/1520-0450(1971)010<1285:TSRONS>2.0.CO;2.CrossRefGoogle Scholar
  11. Coulson, K. L., 1988: Polarization and Intensity of Light in the Atmosphere. A. Deepak Publishing, Hampton VA, 596 pp.Google Scholar
  12. Coulson, K. L., J. V. Dave, and Z. Sekera, 1960: Tables Related to Radiation Emerging from a Planetary Atmosphere with Rayleigh Scattering. University of California Press, Berkeley, 548 pp.Google Scholar
  13. Doda, D. D., and A. E. S. Green, 1980: Surface reflectance measurements in the UV from an airborne platform. Part 1. Appl. Opt., 19, 2140–2145, doi: 10.1364/AO.19.002140.CrossRefGoogle Scholar
  14. Eck, T. F., P. K. Bhartia, and J. B. Kerr, 1995: Satellite estimation of spectral UVB irradiance using TOMS derived total ozone and UV reflectivity. Geophys. Res. Lett., 22, 611–614, doi: 10.1029/95GL00111.CrossRefGoogle Scholar
  15. Emde, C., R. Buras-Schnell, A. Kylling, et al., 2016: The lib-Radtran software package for radiative transfer calculations (version 2.0.1). Geosci. Model Dev., 9, 1647–1672, doi: 10.5194/gmd-9-1647-2016.CrossRefGoogle Scholar
  16. Evans, K. F., and G. L. Stephens, 1991: A new polarized atmospheric radiative transfer model. J. Quant. Spectrosc. Radiat. Transfer, 46, 413–423, doi: 10.1016/0022-4073(91)90043-P.CrossRefGoogle Scholar
  17. Garcia, R. D. M., and C. E. Siewert, 1989: The FN method for radiative transfer models that include polarization effects. J. Quant. Spectrosc. Radiat. Transfer, 41, 117–145, doi: 10.1016/0022-4073(89)90133-7.CrossRefGoogle Scholar
  18. Hansen, J. E., and L. D. Travis, 1974: Light scattering in planetary atmospheres. Space Sci. Rev., 16, 527–610, doi: 10.1007/BF00168069.CrossRefGoogle Scholar
  19. Hasekamp, O. P., J. Landgraf, and R. van Oss, 2002: The need of polarization modeling for ozone profile retrieval from backscattered sunlight. J. Geophys. Res. Atmos., 107, 4692, doi: 10.1029/2002JD002387.Google Scholar
  20. Heath, D. F., A. J. Krueger, H. A. Roeder, et al., 1975: The solar backscatter ultraviolet and total ozone mapping spectrometer (SBUV/TOMS) for Nimbus G. Opt. Eng., 14, 144323, doi: 10.1117/12.7971839.CrossRefGoogle Scholar
  21. Herman, J. R., and E. A. Celarier, 1997: Earth surface reflectivity climatology at 340-380 nm from TOMS data. J. Geophys. Res. Atmos., 102, 28003–28011, doi: 10.1029/97JD02074.CrossRefGoogle Scholar
  22. International Commission on Non-Ionizing Radiation Protection (ICNIRP), 2004: Medical magnetic resonance (MR) procedures: Protection of patients. Health Phys., 87, 197–216, doi: 10.1097/HP.0b013e3181aff9eb.CrossRefGoogle Scholar
  23. Kleipool, Q. L., M. R. Dobber, J. F. de Haan, et al., 2008: Earth surface reflectance climatology from 3 years of OMI data. J. Geophys. Res. Atmos., 113, D18308, doi: 10.1029/2008JD010290.CrossRefGoogle Scholar
  24. Koelemeijer, R. B. A., J. F. de Haan, and P. Stammes, 2003: A database of spectral surface reflectivity in the range 335-772 nm derived from 5.5 years of GOME observations. J. Geophys. Res. Atmos., 108, 4070, doi: 10.1029/2002JD002429.CrossRefGoogle Scholar
  25. Kokhanovsky, A. A., J. L. Deuzé, D. J. Diner, et al., 2010: The inter-comparison of major satellite aerosol retrieval algorithms using simulated intensity and polarization characteristics of reflected light. Atmos. Meas. Tech., 3, 909–932, doi: 10.5194/amt-3-909-2010.CrossRefGoogle Scholar
  26. Landgraf, J., O. P. Hasekamp, M. A. Box, et al., 2001: A linearized radiative transfer model for ozone profile retrieval using the analytical forward-adjoint perturbation theory approach. J. Geophys. Res. Atmos., 106, 27291–27305, doi: 10.1029/2001JD000636.CrossRefGoogle Scholar
  27. Levelt, P. F., G. H. J. van den Oord, M. R. Dobber, et al., 2006: The ozone monitoring instrument. IEEE Trans. Geosci. Remote Sens., 44, 1093–1101, doi: 10.1109/TGRS.2006.872333.CrossRefGoogle Scholar
  28. McClatchey, R. A., R. W. Fenn, J. E. A. Selby, et al., 1972: Optical Properties of the Atmosphere. 3rd Ed., Air Force Cambridge Research Laboratory, Bedford, MA, 110 pp.Google Scholar
  29. McPeters, R. D., T. Miles, L. E. Flynn, et al., 1994: Comparison of SBUV and SAGE II ozone profiles: Implications for ozone trends. J. Geophys. Res. Atmos., 99, 20513–20524, doi: 10.1029/94JD02008.CrossRefGoogle Scholar
  30. Mishchenko, M. I., A. A. Lacis, and L. D. Travis, 1994: Errors induced by the neglect of polarization in radiance calculations for Rayleigh-scattering atmospheres. J. Quant. Spectrosc. Radiat. Transfer, 51, 491–510, doi: 10.1016/0022-4073(94)90149-X.CrossRefGoogle Scholar
  31. Munro, R., M. Eisinger, C. Anderson, et al., 2006: GOME-2 on MetOp. Proceedings of 2006 EUMETSAT Meteorological Satellite Conference, Helsinki, Finland, 1–25.Google Scholar
  32. Orphal, J., and K. Chance, 2003: Ultraviolet and visible absorption cross-sections for HITRAN. J. Quant. Spectrosc. Radiat. Transfer, 82, 491–504, doi: 10.1016/S0022-4073(03)00173-0.CrossRefGoogle Scholar
  33. Ricchiazzi, P., S. R. Yang, C. Gautier, et al., 1998: SBDART: A research and teaching software tool for plane-parallel radiative transfer in the earth’s atmosphere. Bull. Amer. Meteor. Soc., 79, 2101–2114, doi: 10.1175/1520-0477(1998)079<2101:SARATS>2.0.CO;2.CrossRefGoogle Scholar
  34. Rothman, L. S., I. E. Gordon, Y. Babikov, et al., 2013: The HITRAN2012 molecular spectroscopic database. J. Quant. Spectrosc. Radiat. Transfer, 130, 4–50, doi: 10.1016/j.jqsrt.2013.07.002.CrossRefGoogle Scholar
  35. Rozanov, V. V., D. Diebel, R. J. D. Spurr, et al., 1997: GOMETRAN: A radiative transfer model for the satellite project GOME, the plane-parallel version. J. Geophys. Res. Atmos., 102, 16683–16695, doi: 10.1029/96JD01535.CrossRefGoogle Scholar
  36. Rozanov, V. V., A. V. Rozanov, A. A. Kokhanovsky, 2014: Radiative transfer through terrestrial atmosphere and ocean: Software package SCIATRAN. J. Quant. Spectrosc. Radiat. Transfer, 133, 13–71.CrossRefGoogle Scholar
  37. Seftor, C. J., G. Jaross, M. Kowitt, et al., 2014: Postlaunch performance of the Suomi National Polar-orbiting Partnership Ozone Mapping and Profiler Suite (OMPS) nadir sensors. J. Geophys. Res. Atmos., 119, 4413–4428, doi: 10.1002/2013JD020472.CrossRefGoogle Scholar
  38. Spurr, R., J. Wang, J. Zeng, et al., 2012: Linearized T-matrix and Mie scattering computations. J. Quant. Spectrosc. Radiat. Transfer, 113, 425–439, doi: 10.1016/j.jqsrt.2011.11.014.CrossRefGoogle Scholar
  39. Spurr, R. J. D., 2006: VLIDORT: A linearized pseudo-spherical vector discrete ordinate radiative transfer code for forward model and retrieval studies in multilayer multiple scattering media. J. Quant. Spectrosc. Radiat. Transfer, 102, 316–342, doi: 10.1016/j.jqsrt.2006.05.005.CrossRefGoogle Scholar
  40. Spurr, R. J. D., Kurosu T. P., and K. V. Chance, 2001: A linearized discrete ordinate radiative transfer model for atmospheric remote-sensing retrieval. J. Quant. Spectrosc. Radiat. Transfer, 68, 689–735, doi: 10.1016/S0022-4073(00)00055-8.CrossRefGoogle Scholar
  41. Tilstra, L. G., O. N. E. Tuinder, P. Wang, et al., 2017: Surface reflectivity climatologies from UV to NIR determined from Earth observations by GOME-2 and SCIAMACHY. J. Geophys. Res. Atmos., 122, 4084–4111, doi: 10.1002/2016JD025940.CrossRefGoogle Scholar
  42. Tsay, S. C., and K. Stamnes, 1992: Ultraviolet radiation in the Arctic: The impact of potential ozone depletions and cloud effects. J. Geophys. Res. Atmos., 97, 7829–7840, doi: 10.1029/91JD02915.CrossRefGoogle Scholar
  43. van der Leun, J. C., and F. R. de Gruijl, 1993: Influences of ozone depletion on human and animal health. UV-B Radiation and Ozone Depletion: Effects on Humans, Animals, Plants, Microorganisms, and Materials, M. Tevini, Ed., Lewis Publishers, Ann Arbor MI, 95–123.Google Scholar
  44. Wang, J., X. G. Xu, S. G. Ding, et al., 2014: A numerical testbed for remote sensing of aerosols, and its demonstration for evaluating retrieval synergy from a geostationary satellite constellation of GEO-CAPE and GOES-R. J. Quant. Spectrosc. Radiat. Transfer, 146, 510–528, doi: 10.1016/j.jqsrt.2014.03.020.CrossRefGoogle Scholar
  45. Zeng, J., R. McKenzie, K. Stamnes, et al., 1994: Measured UV spectra compared with discrete ordinate method simulations. J. Geophys. Res. Atmos., 99, 23019–23030, doi: 10.1029/94 JD02145.CrossRefGoogle Scholar

Copyright information

© The Chinese Meteorological Society and Springer-Verlag Berlin Heidelberg 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Severe Weather, Chinese Academy of Meteorological SciencesChina Meteorological AdministrationBeijingChina
  2. 2.Laboratory of Environmental Model and Data OptimaLaurelUSA

Personalised recommendations