Advertisement

Journal of Meteorological Research

, Volume 33, Issue 2, pp 289–306 | Cite as

An Analysis of the Discontinuity in Chinese Radiosonde Temperature Data Using Satellite Observation as a Reference

  • Yanjun GuoEmail author
  • Chengzhi Zou
  • Panmao Zhai
  • Guofu Wang
Regular Articles
  • 24 Downloads

Abstract

Reconciling upper-air temperature trends derived from radiosonde and satellite observations is a necessary step to confidently determine the global warming rate. This study examines the raw and homogenized radiosonde observations over China and compares them with layer-mean atmospheric temperatures derived from satellite microwave observations for the lower-troposphere (TLT), mid-troposphere (TMT), upper-troposphere (TUT), and lower-stratosphere (TLS) by three research groups. Comparisons are for averages over China, excluding the Tibetan Plateau, and at individual stations where metadata contain information on radiosonde instrument changes. It is found that major differences between the satellite and radiosonde observations are related to artificial systematic changes. The radiosonde system updates in the early 2000s over China caused significant discontinuities and led the radiosonde temperature trends to exhibit less warming in the middle and upper troposphere and more cooling in the lower stratosphere than satellite temperatures. Homogenized radiosonde data have been further adjusted by using the shift-point adjustment approaches to match with satellite products for China averages. The obtained trends during 1979-2015 from the re-adjusted radiosonde observation are respectively 0.203 ± 0.066, 0.128 ± 0.044, 0.034 ± 0.039, and -0.329 ± 0.135 K decade-1 for TLT, TMT, TUT, and TLS equivalents. Compared to satellite trends, the re-adjusted radiosonde trends are within 0.01 K decade-1 for TMT and TUT, 0.054 K decade-1 warmer for TLT, and 0.051 K decade-1 cooler for TLS. The results suggest that the use of satellite data as a reference is helpful in identifying and removing inhomogeneities of radiosonde temperatures over China and reconciling their trends to satellite microwave observations. Future efforts are to homogenize radiosonde temperatures at individual stations over China by using similar approaches.

Key words

radiosonde temperature homogenization satellite microwave sounding unit China upper air temperature trends 

Notes

Acknowledgments

We thank NOAA’s Satellite Applications and Research (STAR), University of Alabama Huntsville (UAH), Remote Sensing System (RSS), Met Office Hadley Centre (MOHC), and National Meteorological Information Center (NMIC) of the China Meteorological Administration (CMA) for providing MSU and radiosonde temperature data. Thanks go to Dr. Chen Zhe for providing homogenized radiosonde temperature data and Mr. Zhang Siqi for programming support. The views, opinions, and findings contained in this report are those of the authors and should not be construed as an official NOAA or U.S. government position, policy, or decision.

References

  1. Cao, L. J., Y. N. Zhu, G. L. Tang, et al., 2016: Climatic wanning in China according to a homogenized data set from 2419 stations. Int. J. Climatol, 36, 4384–4392, doi: 10.1002/joc.4639.CrossRefGoogle Scholar
  2. Chen, Z., and S. Yang, 2014: Homogenization and analysis of China radiosonde temperature data from 1979 to 2012. Acta Meteor. Sinica, 72, 794–804, doi: 10.11676/qxxb2014.046. (in Chinese)Google Scholar
  3. Christy, J. R., and W. B. Norris, 2006: Satellite and VIZ-radio-sonde intercomparisons for diagnosis of nonclimatic influences. J. Atmos. Oceanic Technol., 23, 1181–1194, doi: 10.1175/JTECH1937.1.CrossRefGoogle Scholar
  4. Christy, J. R., and W. B. Norris, 2009: Discontinuity issues with radiosonde and satellite temperatures in the Australian region 1979-2006. J. Atmos. Oceanic Technol., 26, 508–522, doi: 10.1175/2008JTECHA1126.1.CrossRefGoogle Scholar
  5. Christy, J. R., R. W. Spencer, W. B. Noms, et al, 2003: Error estimates of version 5.0 of MSU-AMSU bulk atmospheric temperatures. J. Atmos. Oceanic Technol., 20, 613–629, doi: 10.1175/1520-0426(2003)20<613:EEOVOM>2.0.CO;2.CrossRefGoogle Scholar
  6. Christy, J. R., W. B. Norris, R. W. Spencer, et al., 2007: Tropo-spheric temperature change since 1979 from tropical radiosonde and satellite measurements. J. Geophys. Res. Atmos., 112, D06102, doi: 10.1029/2005JD006881.Google Scholar
  7. Christy, J. R., R. W. Spencer, W. D. Braswell, et al., 2018: Examination of space-based bulk atmospheric temperatures used in climate research. Int. J. Remote Sens., 39, 3580–3607, doi: 10.1080/01431161.2018.1444293.CrossRefGoogle Scholar
  8. Durre, I., R. S. Vose, and D. B. Wuertz, 2006: Overview of the integrated global radiosonde archive. J. Climate, 19, 53–68, doi: 10.1175/JCLI3594.1.CrossRefGoogle Scholar
  9. Free, M., D. J. Seidel, J. K. Angell, et al., 2005: Radiosonde atmospheric temperature products for assessing climate (RAT-PAC): A new data set of large-area anomaly time series. J. Geophys. Res. Atmos., 110, D22101, doi: 10.1029/2005JD 006169.Google Scholar
  10. Guo, Y. J., and Y. H. Ding, 2009: Long-term free-atmosphere temperature trends in China derived from homogenized in situ radiosonde temperature series. J. Climate, 22, 1037–1051, doi: 10.1175/2008JCLI2480.1.CrossRefGoogle Scholar
  11. Guo, Y. J., and Y. H. Ding, 2011: Impacts of reference time series on the homogenization of radiosonde temperature. Adv. Atmos. Sci., 28, 1011–1022, doi: 10.1007/s00376-010-9211-3.CrossRefGoogle Scholar
  12. Guo, Y. J., P. W. Thome, M. P. McCarthy, et al, 2008: Radiosonde temperature trends and their uncertainties over eastern China. Int. J. Climatol., 28, 1269–1281, doi: 10.1002/joc.l633.CrossRefGoogle Scholar
  13. Guo, Y. J., S. Q. Zhang, J. H. Yan, et al., 2016: A comparison of atmospheric temperature over China between radiosonde observations and multiple reanalysis datasets. J. Meteor. Res., 30, 242–257, doi: 10.1007/sl3351-016-5169-0.CrossRefGoogle Scholar
  14. Haimberger, L., 2007: Homogenization of radiosonde temperature time series using innovation statistics. J. Climate, 20, 1377–1403, doi: 10.1175/JCLI4050.1.CrossRefGoogle Scholar
  15. Haimberger, L., C. Tavolato, and S. Sperka, 2008: Toward elimination of the warm bias in historic radiosonde temperature records—Some new results from a comprehensive intercompar-ison of upper-air data. J. Climate, 21, 4587–4606, doi: 10.1175/2008JCLI1929.1.CrossRefGoogle Scholar
  16. Haimberger, L., C. Tavolato, and S. Sperka, 2012: Homogenization of the global radiosonde temperature dataset through combined comparison with reanalysis background series and neighboring stations. J. Climate, 25, 8108–8131, doi: 10.1175/JCLI-D-11-00668.1.CrossRefGoogle Scholar
  17. Hurrell, J. W., S. J. Brown, K. E. Trenberth, et al, 2000: Comparison of tropospheric temperatures from radiosondes and satellites: 1979-98. Bull. Amer. Meteor. Soc, 81, 2165–2178, doi: 10.1175/1520-0477(2000)081<2165:COTTFR>2.3.CO;2.CrossRefGoogle Scholar
  18. IPCC, 2013: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, T. F. Stocker, D. Qin, G.-K. Plattner, et al., Eds., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1535 pp.Google Scholar
  19. Mears, C. A., and F. J. Wentz, 2009a: Construction of the remote sensing systems V3.2 atmospheric temperature records from the MSU and AMSU Microwave Sounders. J. Atmos. OceaniTechnol., 26, 1040–1056, doi:10.1175/2008JTECHA1176.1.Google Scholar
  20. Mears, C. A., and F. J. Wentz, 2009b: Construction of the RSS V3.2 lower-tropospheric temperature dataset from the MSU and AMSU Microwave Sounders. J. Atmos. Oceanic Technol, 26, 1493–1509, doi: 10.1175/2009JTECHA1237.1.CrossRefGoogle Scholar
  21. Mears, C. A., and F. J. Wentz, 2016: Sensitivity of satellite-derived tropospheric temperature trends to the diurnal cycle adjustment. J. Climate, 29, 3629–3646, doi: 10.1175/JCLI-D-15-0744.1.CrossRefGoogle Scholar
  22. Mears, C. A., and F. J. Wentz, 2017: A satellite-derived lower-tropospheric atmospheric temperature dataset using an optimized adjustment for diurnal effects. J. Climate, 30, 7695–7718, doi: 10.1175/JCLI-D-16-0768.1.CrossRefGoogle Scholar
  23. Mears, C. A., M. C. Schabel, and F. J. Wentz, 2003: A reanalysis of the MSU channel 2 tropospheric temperature record. J. Climate, 16, 3650–3664, doi: 10.1175/1520-0442(2003)016<3650:AROTMC>2.0.CO;2.CrossRefGoogle Scholar
  24. Mears, C. A., F. J. Wentz, and P. W. Thome, 2012: Assessing the value of microwave sounding unit-radiosonde comparisons in ascertaining errors in climate data records of tropospheric temperatures. J. Geophys. Res. Atmos., 117, D19103, doi: 10.1029/2012JD017710.Google Scholar
  25. Parker, D. E., M. Gordon, D. P. N. Cullum, et al., 1997: A new global gridded radiosonde temperature data base and recent temperature trends. Geophys. Res. Lett., 24, 1499–1502, doi: 10.1029/97GL01186.CrossRefGoogle Scholar
  26. Po-Chedley, S., and Q. Fu, 2012: A bias in the midtropospheric channel warm target factor on the NCAA-9 microwave sounding unit. J. Atmos. Oceanic Technol, 29, 646–652, doi: 10.1175/JTECH-D-l 1-00147.1.CrossRefGoogle Scholar
  27. Po-Chedley, S., T. J. Thorsen, and Q. Fu, 2015: Removing diurnal cycle contamination in satellite-derived tropospheric temperatures: Understanding tropical tropospheric trend discrepancies. J. Climate, 28, 2274–2290, doi: 10.1175/JCLI-D-13-00767.1.CrossRefGoogle Scholar
  28. Randall, R. M., and B. M. Herman, 2008: Using limited time period trends as a means to determine attribution of discrepancies in microwave sounding unit-derived tropospheric temperature time series. J. Geophys. Res. Atmos., 113, D05105, doi: 10.1029/2007JD008864.Google Scholar
  29. Randel, W. J., and F. Wu, 2006: Biases in stratospheric and tropospheric temperature trends derived from historical radiosonde data. J. Climate, 19, 2094–2104, doi: 10.1175/JCLI3717.1.CrossRefGoogle Scholar
  30. Ren, Z. H., Y. Yu, F. L. Zou, et al., 2012: Quality detection of surface historical basic meteorological data. J. Appl. Meteor. Sci, 23, 739–747, doi: 10.3969/j.issn.l001-7313.2012.06.011. (in Chinese)Google Scholar
  31. Ruan, X., A. Y. Xiong, K. X. Hu, et al., 2015: Correcting geopo-tential height errors of some mandatory levels of Chinese historic radiosonde observations. J. Appl. Meteor. Sci., 26, 257–267, doi: 10.11898/1001-7313.20150301. (in Chinese)Google Scholar
  32. Santer, B. D., T. M. L. Wigley, J. S. Boyle, et al., 2000: Statistical significance of trends and trend differences in layer-average atmospheric temperature time series. J. Geophys. Res. Atmos., 105, 7337–7356, doi: 10.1029/1999JD901105.CrossRefGoogle Scholar
  33. Santer, B. D., S. Solomon, G. Pallotta, et al., 2017a: Comparing tropospheric wanning in climate models and satellite data. J. Climate, 30, 373–392, doi: 10.1175/JCLI-D-16-0333.1.CrossRefGoogle Scholar
  34. Santer, B. D., J. C. Fyfe, G. Pallotta, et al., 2017b: Causes of differences in model and satellite tropospheric warming rates. Nat. Geosci., 10, 478–485, doi: 10.1038/ngeo2973.CrossRefGoogle Scholar
  35. Seidel, D. J., J. K. Angell, J. Christy, et al., 2004: Uncertainty in signals of large-scale climate variations in radiosonde and satellite upper-air temperature datasets. J. Climate, 17, 2225–2240, doi: 10.1175/1520-0442(2004)017<2225:UISOLC>2.0.CO;2.CrossRefGoogle Scholar
  36. Seidel, D. J., F. H. Berger, H. J. Diamond, et al., 2009: Reference upper-air observations for climate: Rationale, progress, and plans. Bull. Amer. Meteor. Soc., 90, 361–369, doi: 10.1175/2008BAMS2540.1.CrossRefGoogle Scholar
  37. Seidel, D. J., N. P. Gillett, J. R. Lanzante, et al., 2011: Stratospheric temperature trends: Our evolving understanding. Wiley Interdiscip. Rev.: Climate Change, 2, 592–616, doi: 10.1002/WCC.125.Google Scholar
  38. Sherwood, S. C, and N. Nishant, 2015: Atmospheric changes through 2012 as shown by iteratively homogenized radiosonde temperature and wind data (IUKv2). Environ. Res. Lett., 10, 054007, doi: 10.1088/1748-9326/10/5/054007.Google Scholar
  39. Shi, Y., P. M. Zhai, and Z. H. Jiang, 2016: Multi-sliding time windows based changing trend of mean temperature and its association with the global-warming hiatus. J. Meteor. Res., 30, 232–241, doi: 10.1007/s13351-016-5093-3.CrossRefGoogle Scholar
  40. Spencer, R. W., and J. R. Christy, 1990: Precise monitoring of global temperature trends from satellites. Science, 247, 1558–1562, doi: 10.1126/science.247.4950.1558.CrossRefGoogle Scholar
  41. Spencer, R. W., and J. R. Christy, 1992: Precision and radiosonde validation of satellite gridpoint temperature anomalies. Part I: MSU channel 2. J. Climate, 5, 847–857, doi: 10.1175/1520-0442(1992)005<0847:PARVOS>2.0.CO;2.CrossRefGoogle Scholar
  42. Spencer, R. W., J. R Christy, and W. D. Braswell, 2017: UAH version 6 global satellite temperature products: Methodology and results. Asia-Pac. J. Atmos. Sci., 53, 121–130, doi: 10.1 007/s13143-017-0010-y.CrossRefGoogle Scholar
  43. Thome, P. W., D. E. Parker, J. R. Christy, et al, 2005a: Uncertainties in climate trends: Lessons from upper-air temperature records. Bull. Amer. Meteor. Soc., 86, 1437–1442, doi: 10.1175/BAMS-86-10-1437.CrossRefGoogle Scholar
  44. Thorne, P. W., D. E. Parker, S. F. B. Tett, et al., 2005b: Revisiting radiosonde upper air temperatures from 1958 to 2002. J. Geophys. Res. Atmos., 110, D18105, doi: 10.1029/2004jd 005753.Google Scholar
  45. Thorne, P. W., J. R. Lanzante, T. C. Peterson, et al., 2011: Tropospheric temperature trends: History of an ongoing controversy. Wiley Interdiscip. Rev.: Climate Change, 2, 66–88, doi: 10.1002/wcc.80.Google Scholar
  46. Wang, X. L., Q. H. Wen, and Y. H. Wu, 2007: Penalized maximal t test for detecting undocumented mean change in climate data series. J. Appl. Meteor. Climatol, 46, 916–931, doi: 10.1175/JAM2504.1.CrossRefGoogle Scholar
  47. Xu, W. H., Q. X. Li, X. L. Wang, et al., 2013: Homogenization of Chinese daily surface air temperatures and analysis of trends in the extreme temperature indices. J. Geophys. Res. Atmos., 118, 9708–9720, doi: 10.1002/jgrd.50791.CrossRefGoogle Scholar
  48. Zhai, P. M., 1997: Some gross errors and biases in China’s historical radiosonde data. Acta Meteor. Sinica, 55, 563–572, doi: 10.11676/qxxb1997.055. (in Chinese)Google Scholar
  49. Zhai, P. M., and R. E. Eskridge, 1996: Analyses of inhomogeneit-ies in radiosonde temperature and humidity time series. J. Climate, 9, 884–894, doi: 10.1175/1520-0442(1996)0090884: AOIIRT>2.0.CO;2.CrossRefGoogle Scholar
  50. Zou, C. Z., and W. Wang, 2011: Intersatellite calibration of AMSU-A observations for weather and climate applications. J. Geophys. Res. Atmos., 116, D23113, doi: 10.1029/2011 JD016205.Google Scholar
  51. Zou, C. Z, and H. F. Qian, 2016: Stratospheric temperature climate data record from merged SSU and AMSU-A observations. J. Atmos. Oceanic Technol, 33, 1967–1984, doi: 10. 1175/JTECH-D-16-0018.1.CrossRefGoogle Scholar
  52. Zou, C. Z., M. D. Goldberg, Z. H. Cheng, et al., 2006: Recalibration of microwave sounding unit for climate studies using simultaneous nadir overpasses. J. Geophys. Res. Atmos., 111, D19114, doi: 10.1029/2005JD006798.Google Scholar
  53. Zou, C.-Z., M. D. Goldberg, and X. J. Hao, 2018: New generation of U.S. satellite microwave sounder achieves high radiometric stability performance for reliable climate change detection. Sci. Adv., 4, eaau0049, doi: 10.1126/sciadv.aau0049.Google Scholar

Copyright information

© The Chinese Meteorological Society and Springer-Verlag Berlin Heidelberg 2019

Authors and Affiliations

  • Yanjun Guo
    • 1
    Email author
  • Chengzhi Zou
    • 2
  • Panmao Zhai
    • 3
  • Guofu Wang
    • 1
  1. 1.National Climate CenterChina Meteorological AdministrationBeijingChina
  2. 2.Center for Satellite Applications and ResearchNational Oceanic and Atmospheric Administration / National Environmental Satellite, Data, and Information ServiceCollege ParkUSA
  3. 3.Chinese Academy of Meteorolgical SciencesChina Meteorological AdministrationBeijingChina

Personalised recommendations