Advertisement

Journal of Meteorological Research

, Volume 33, Issue 3, pp 563–575 | Cite as

Comparison of the Global Energy Cycle between Chinese Reanalysis Interim and ECMWF Reanalysis

  • Bin Zhao
  • Bo ZhangEmail author
  • Chunxiang Shi
  • Jingwei Liu
  • Lipeng Jiang
Regular Articles
  • 18 Downloads

Abstract

The global energy cycle is a diagnostic metric widely used to gauge the quality of datasets. In this paper, the “Mixed Space-Time Domain” method for diagnosis of energy cycle is evaluated by using newly developed datasets—the Chinese Reanalysis Interim (CRAI) and ECMWF Reanalysis version 5 (ERA5), over a 7-yr period (2010–16) on seasonal and monthly timescales. The results show that the energy components calculated from the two reanalysis datasets are highly consistent; however, some components in the global energy integral from CRAI are slightly larger than those from ERA5. The main discrepancy in the energy components stems from the conversion of baroclinic process, whereas the dominant difference originates from the conversion from stationary eddy available potential energy to stationary eddy kinetic energy (CES), which is caused by systematic differences in the temperature and vertical velocity in low-mid latitudes of the Northern Hemisphere and near the Antarctic, where there exist complex terrains. Furthermore, the monthly analysis reveals that the general discrepancy in the temporal variation between the two datasets also lie mainly in the CES as well as corresponding generation and dissipation rates.

Key words

global energy cycle transient waves conversion terms Chinese Reanalysis Interim (CRAI) ECMWF Reanalysis version 5 (ERA5) 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arpe, K., C. Branković, E. Oriol, et al., 1986: Variability in time and space of energetics from a long series of atmospheric data produced by ECMWF. Contrib. Atmos. Phys., 59, 321–355.Google Scholar
  2. Boer, G. J., and S. Lambert, 2008: The energy cycle in atmospheric models. Climate Dyn., 30, 371–390, DOI:  https://doi.org/10.1007/s00382-007-0303-4.CrossRefGoogle Scholar
  3. Dee, D. P., S. M. Uppala, A. J. Simmons, et al., 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553–597, DOI:  https://doi.org/10.1002/qj.828.CrossRefGoogle Scholar
  4. Dickinson, R. E., 1969: Theory of planetary wave-zonal flow interaction. J. Atmos. Sci., 26, 73–81, DOI:  https://doi.org/10.1175/1520-0469(1969)0262.0.CO;2.CrossRefGoogle Scholar
  5. Gao, H., L. X. Chen, J. H. He, et al., 2006: Characteristics of zonal propagation of atmospheric kinetic energy at equatorial region in Asia. Acta Meteor. Sinica, 20, 86–94.Google Scholar
  6. Kalnay, E., M. Kanamitsu, R. Kistler, et al., 1996: The NCEP/NCAR 40-year reanalysis project. Bull. Amer. Meteor. Soc., 77, 437–472, DOI:  https://doi.org/10.1175/1520-0477(1996)0772.0.CO;2.CrossRefGoogle Scholar
  7. Kanamitsu, M., W. Ebisuzaki, J. Woollen, et al., 2002: NCEP-DOE AMIP-II Reanalysis (R-2). Bull. Amer. Meteor. Soc., 83, 1631–1644, DOI:  https://doi.org/10.1175/BAMS-83-11-1631.CrossRefGoogle Scholar
  8. Kim, Y. H., and M. K. Kim, 2013: Examination of the global Lorenz energy cycle using MERRA and NCEP-reanalysis 2. Climate Dyn., 40, 1499–1513, DOI:  https://doi.org/10.1007/s00382-012-1358-4.CrossRefGoogle Scholar
  9. Kistler, R., E. Kalnay, W. Collins, et al., 2001: The NCEP-NCAR 50-year reanalysis: Monthly means CD-ROM and documentation. Bull. Amer. Meteor. Soc., 82, 247–268, DOI:  https://doi.org/10.1175/1520-0477(2001)0822.3.CO;2.CrossRefGoogle Scholar
  10. Li, L. M., A. P. Ingersoll, X. Jiang, et al., 2007: Lorenz energy cycle of the global atmosphere based on reanalysis datasets. Geophys. Res. Lett., 34, 16813, DOI:  https://doi.org/10.1029/2007GL029985.Google Scholar
  11. Li, Q. Q., and Q. G. Zhu, 1995: Analysis on the source and sink of kinetic energy of atmospheric 30–60 day period oscillation and the probable causes. Acta Meteor. Sinica, 9, 420–431.Google Scholar
  12. Lorenz, E. N., 1955: Available potential energy and the maintenance of the general circulation. Tellus, 7, 157–167, DOI:  https://doi.org/10.3402/tellusa.v7i2.8796.CrossRefGoogle Scholar
  13. Luo, Z. X., 1994: Effect of energy dispersion on the structure and motion of tropical cyclone. Acta Meteor. Sinica, 8, 51–59.Google Scholar
  14. Marques, C. A. F., A. Rocha, J. Corte-Real, et al., 2009: Global atmospheric energetics from NCEP-reanalysis 2 and ECMWFERA40 reanalysis. Int. J. Climatol., 29, 159–174, DOI:  https://doi.org/10.1002/joc.1704.CrossRefGoogle Scholar
  15. Marques, C. A. F., A. Rocha, and J. Corte-Real, 2010: Comparative energetics of ERA-40, JRA-25 and NCEP-R2 reanalysis, in the wave number domain. Dyn. Atmos. Oceans, 50, 375–399, DOI:  https://doi.org/10.1016/j.dynatmoce.2010.03.003.CrossRefGoogle Scholar
  16. Onogi, K., H. Koide, M. Sakamoto, et al., 2005: JRA-25: Japanese 25-year re-analysis project—progress and status. Quart. J. Roy. Meteor. Soc., 131, 3259–3268, DOI:  https://doi.org/10.1256/qj.05.88.CrossRefGoogle Scholar
  17. Oort, A. H., 1964: On estimates of the atmospheric energy cycle. Mon. Wea. Rev., 92, 483–493, DOI:  https://doi.org/10.1175/1520-0493(1964)0922.3.CO;2.CrossRefGoogle Scholar
  18. Oort, A. H., and J. P. Peixóto, 1974: The annual cycle of the energetics of the atmosphere on a planetary scale. J. Geophys. Res., 79, 2705–2719, DOI:  https://doi.org/10.1029/JC079i018p02705.CrossRefGoogle Scholar
  19. Rienecker, M. M., M. J. Suarez, R. Gelaro, et al., 2011: MERRA: NASA’s modern-era retrospective analysis for research and applications. J. Climate, 24, 3624–3648, DOI:  https://doi.org/10.1175/JCLI-D-11-00015.1.CrossRefGoogle Scholar
  20. Simmons, A. J., and B. J. Hoskins, 1980: Barotropic influences on the growth and decay of nonlinear baroclinic waves. J. Atmos. Sci., 37, 1679–1684, DOI:  https://doi.org/10.1175/1520-0469(1980)0372.0.CO;2.CrossRefGoogle Scholar
  21. Steinheimer, M., M. Hantel, and P. Bechtold, 2008: Convection in Lorenz’s global energy cycle with the ECMWF model. Tellus A, 60, 1001–1022, DOI:  https://doi.org/10.1111/j.1600-0870.2008.00348.x.CrossRefGoogle Scholar
  22. Stone, P. H., 1978: Baroclinic adjustment. J. Atmos. Sci., 35, 561–571, DOI:  https://doi.org/10.1175/1520-0469(1978)0352.0.CO;2.CrossRefGoogle Scholar
  23. Ulbrich, U., and P. Speth, 1991: The global energy cycle of stationary and transient atmospheric waves: Results from ECMWF analyses. Meteor. Atmos. Phys., 45, 125–138, DOI:  https://doi.org/10.1007/BF01029650.CrossRefGoogle Scholar
  24. Uppala, S. M., P. W. KÅllberg, A. J. Simmons, et al., 2005: The ERA-40 re-analysis. Quart. J. Roy. Meteor. Soc., 131, 2961–3012, DOI:  https://doi.org/10.1256/qj.04.176.CrossRefGoogle Scholar
  25. von Storch, J. S., C. Eden, I. Fast, et al., 2012: An estimate of the Lorenz energy cycle for the world ocean based on the STORM/NCEP simulation. J. Phys. Oceanogr., 42, 2185–2205, DOI:  https://doi.org/10.1175/JPO-D-12-079.1.CrossRefGoogle Scholar
  26. Zhao, B., and B. Zhang, 2014: Diagnostic study of global energy cycle of the GRAPES global model in the mixed space-time domain. J. Meteor. Res., 28, 592–606, DOI:  https://doi.org/10.1007/s1351-014-3072-0.CrossRefGoogle Scholar

Copyright information

© The Chinese Meteorological Society and Springer-Verlag Berlin Heidelberg 2019

Authors and Affiliations

  • Bin Zhao
    • 1
    • 2
  • Bo Zhang
    • 1
    Email author
  • Chunxiang Shi
    • 3
  • Jingwei Liu
    • 3
  • Lipeng Jiang
    • 3
  1. 1.National Meteorological CenterChina Meteorological AdministrationBeijingChina
  2. 2.China Meteorological Administration Numerical Weather Prediction CenterBeijingChina
  3. 3.National Meteorological Information CenterChina Meteorological AdministrationBeijingChina

Personalised recommendations