Advertisement

Journal of Meteorological Research

, Volume 33, Issue 3, pp 553–562 | Cite as

Evaluation of Cloud Top Height Retrievals from China’s Next-Generation Geostationary Meteorological Satellite FY-4A

  • Zhonghui Tan
  • Shuo MaEmail author
  • Xianbin Zhao
  • Wei Yan
  • Wen Lu
Regular Articles
  • 15 Downloads

Abstract

To evaluate the validity of cloud top height (CTH) retrievals from FY-4A, the first of China’s next-generation geostationary meteorological satellite series, the retrievals are compared to those from Himawari-8, CloudSat, Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO), and Moderate Resolution Imaging Spectroradiometer (MODIS) operational products from August to October 2017. Regarding CTHs from CloudSat, CALIPSO, and MODIS as truth, the results show that the performance of FY-4A CTH retrievals is similar to that of Himawari-8. Both FY-4A and Himawari-8 retrieve reasonable CTH values for single-layer clouds, but perform poorly for multi-layer clouds. The mean bias error (MBE) shows that the mean value of FY-4A CTH retrievals is smaller than that of Himawari-8 for single-layer clouds but larger for multi-layer clouds. For ice crystal clouds, both FY-4A and Himawari-8 obtain the underestimated CTHs. However, there is a tendency for FY-4A and Himawari-8 to overestimate the CTH values of CloudSat and CALIPSO mainly for low level liquid water clouds. The temperature inversion near the tops of water clouds may result in an overestimation of CTHs. According to the MBE change with altitude, FY-4A and Himawari-8 overestimate the CTHs mainly for clouds below 3 km, and the overestimation is slightly more apparent in Himawari-8 data than that in FY-4A values. As the cloud optical thickness (COT) increases, the CTH bias of FY-4A CTH retrievals gradually decreases. Two typical cases are analyzed to illustrate the differences between different satellites’ CTH retrievals in detail.

Key words

FY-4A Himawari-8 CloudSat Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) Moderate Resolution Imaging Spectroradiometer (MODIS) cloud top height (CTH) 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This project is supported by the National Satellite Meteorological Center (NSMC) and China Meteorological Administration (CMA). The CloudSat and Himawari-8 data are provided by the CloudSat Data Processing Center (CDPC) and Meteorological Satellite Center of Japan Meteorological Agency (JMA) respectively.

References

  1. Ackerman, S. A., K. I. Strabala, W. P. Menzel, et al., 1998: Discriminating clear sky from clouds with MODIS. J. Geophys. Res. Atmos., 103, 32, 141–32,157, DOI:  https://doi.org/10.1029/1998JD200032.CrossRefGoogle Scholar
  2. Baum, B. A., W. P. Menzel, R. A. Frey, et al., 2012: MODIS cloud-top property refinements for collection 6. J. Appl. Meteor. Climatol., 51, 1145–1163, DOI:  https://doi.org/10.1175/JAMC-D-11-0203.1.CrossRefGoogle Scholar
  3. Bessho, K., K. Date, M. Hayashi, et al., 2016: An introduction to Himawari-8/9—Japan’s new-generation geostationary meteorological satellites. J. Meteor. Soc. Japan, 94, 151–183, DOI:  https://doi.org/10.2151/jmsj.2016-009.CrossRefGoogle Scholar
  4. Delanoë, J., and R. J. Hogan, 2008: A variational scheme for retrieving ice cloud properties from combined radar, lidar, and infrared radiometer. J. Geophys. Res. Atmos., 113, D07204, DOI:  https://doi.org/10.1029/2007JD009000.CrossRefGoogle Scholar
  5. Heidinger, A. K., and M. J. Pavolonis, 2009: Gazing at cirrus clouds for 25 years through a split window. Part I: Methodology. J. Appl. Meteor. Climatol., 48, 110–1116, DOI:  https://doi.org/10.1175/2008JAMC1882.1.CrossRefGoogle Scholar
  6. Heidinger, A. K., M. J. Pavolonis, R. E. Holz, et al., 2010: Using CALIPSO to explore the sensitivity to cirrus height in the infrared observations from NPOESS/VIIRS and GOES-R/ABI. J. Geophys. Res. Atmos., 115, D00H20, DOI:  https://doi.org/10.1029/2009JD012152.CrossRefGoogle Scholar
  7. Holz, R. E., S. A. Ackerman, F. W. Nagle, et al., 2008: Global Moderate Resolution Imaging Spectroradiometer (MODIS) cloud detection and height evaluation using CALIOP. J. Geophys. Res. Atmos., 113, D00A19, DOI:  https://doi.org/10.1022/0088JD009837.CrossRefGoogle Scholar
  8. Iwabuchi, H., M. Saito, Y. Tokoro, et al., 2016: Retrieval of radiative and microphysical properties of clouds from multispectral infrared measurements. Prog. Earth Planet. Sci., 3, 32, DOI:  https://doi.org/10.1186/s40645-016-0108-3.CrossRefGoogle Scholar
  9. Iwabuchi, H., N. S. Putri, M. Saito, et al., 2018: Cloud property retrieval from multiband infrared measurements by Himawari-8. J. Meteor. Soc. Japan, 96B, 27–42, DOI:  https://doi.org/10.2151/jmsj.2018-001.CrossRefGoogle Scholar
  10. Li, J., W. P. Menzel, and A. J. Schreiner, 2001: Variational retrieval of cloud parameters from GOES sounder longwave cloudy radiance measurements. J. Appl. Meteor., 40, 312–330, DOI:  https://doi.org/10.1175/1520-0450(2001)0402.0.CO;2.CrossRefGoogle Scholar
  11. Li, J., W. P. Menzel, W. J. Zhang, et al., 2004: Synergistic use of MODIS and AIRS in a variational retrieval of cloud parameters. J. Appl. Meteor., 43, 1619–1634, DOI:  https://doi.org/10.1175/JAM2166.1.CrossRefGoogle Scholar
  12. Li, J., H.-L. Huang, C.-Y. Liu, et al., 2005: Retrieval of cloud microphysical properties from MODIS and AIRS. J. Appl. Meteor., 44, 1526–1543, DOI:  https://doi.org/10.1175/JAM2281.1.CrossRefGoogle Scholar
  13. Mace, G. G., and Q. Q. Zhang, 2014: The CloudSat radar-lidar geometrical profile product (RL-GeoProf): Updates, improvements, and selected results. J. Geophys. Res. Atmos., 119, 9441–9462, DOI:  https://doi.org/10.1002/2013JD021374.CrossRefGoogle Scholar
  14. Menzel, W. P., R. A. Frey, H. Zhang, et al., 2008: MODIS global cloud-top pressure and amount estimation: Algorithm description and results. J. Appl. Meteor. Climatol., 47, 1175–1198, DOI:  https://doi.org/10.1175/2007JAMC1705.1.CrossRefGoogle Scholar
  15. Menzel, W. P., T. J. Schmit, P. Zhang, et al., 2018: Satellite-based atmospheric infrared sounder development and applications. Bull. Amer. Meteor. Soc., 99, 583–603, DOI:  https://doi.org/10.1175/BAMS-D-16-0293.1.CrossRefGoogle Scholar
  16. Min, M., C. Q. Wu, C. Li, et al., 2017: Developing the science product algorithm testbed for Chinese next-generation geostationary meteorological satellites: Fengyun-4 series. J. Meteor. Res., 31, 708–719, DOI:  https://doi.org/10.1007/s13351-017-6161-z.CrossRefGoogle Scholar
  17. Platnick, S., K. G. Meyer, M. D. King, et al., 2017: The MODIS cloud optical and microphysical products: Collection 6 updates and examples from Terra and Aqua. IEEE Trans. Geosci. Remote Sens., 55, 502–525, DOI:  https://doi.org/10.1109/TGRS.2016.2610522.CrossRefGoogle Scholar
  18. Schmit, T. J., M. M. Gunshor, W. P. Menzel, et al., 2005: Introducing the next-generation advanced baseline imager on GOES-R. Bull. Amer. Meteor. Soc., 86, 1079–1096, DOI:  https://doi.org/10.1175/BAMS-86-8-1079.CrossRefGoogle Scholar
  19. Schmit, T. J., P. Griffith, M. M. Gunshor, et al., 2017: A closer look at the ABI on the GOES-R series. Bull. Amer. Meteor. Soc., 98, 681–698, DOI:  https://doi.org/10.1175/BAMS-D-15-00230.1.CrossRefGoogle Scholar
  20. Sourdeval, O., L. C. Labonnote, G. Brogniez, et al., 2013: A variational approach for retrieving ice cloud properties from infrared measurements: Application in the context of two IIR validation campaigns. Atmos. Chem. Phys., 13, 8229–8244, DOI:  https://doi.org/10.5194/acp-13-8229-2013.CrossRefGoogle Scholar
  21. Watts, P. D., R. Bennartz, and F. Fell, 2011: Retrieval of two-layer cloud properties from multispectral observations using optimal estimation. J. Geophys. Res. Atmos., 116, D16203, DOI:  https://doi.org/10.1029/2011JD015883.CrossRefGoogle Scholar
  22. Weisz, E., J. Li, W. P. Menzel, et al., 2007: Comparison of AIRS, MODIS, CloudSat and CALIPSO cloud top height retrievals. Geophys. Res. Lett., 34, L17811, DOI:  https://doi.org/10.1029/2007GL030676.CrossRefGoogle Scholar
  23. Winker, D., M. Vaughan, A. Omar, et al., 2009: Overview of the CALIPSO mission and CALIOP data processing algorithms. J. Atmos. Ocean Tech., 26, 2310–2323, DOI:  https://doi.org/10.11175/2009JTECHA1281.1.CrossRefGoogle Scholar
  24. Yang, J., Z. Q. Zhang, C. Y. Wei, et al., 2017: Introducing the new generation of Chinese geostationary weather satellites, Fengyun-4. Bull. Amer. Meteor. Soc., 88, 1637–1658, DOI:  https://doi.org/10.1175/BAMS-D-16-0065.1.CrossRefGoogle Scholar
  25. Zhang, P., Q. Guo, B. Y. Chen, et al., 2016: The Chinese next-generation geostationary meteorological satellite FY-4 compared with the Japanese Himawari-8/9 satellites. Adv. Meteor. Sci. Technol., 6, 72–75, DOI:  https://doi.org/10.3969/j.issn.2095-1973.2016.01.010. (in Chinese)Google Scholar
  26. Zhang, Z. Q., Y. H. Dong, and L. Ding, 2016: China’s first second-generation FY-4 meteorological satellite launched. Space International, 12, 6–12. (in Chinese)Google Scholar

Copyright information

© The Chinese Meteorological Society and Springer-Verlag Berlin Heidelberg 2019

Authors and Affiliations

  • Zhonghui Tan
    • 1
  • Shuo Ma
    • 1
    Email author
  • Xianbin Zhao
    • 1
  • Wei Yan
    • 1
  • Wen Lu
    • 1
  1. 1.National University of Defense TechnologyNanjingChina

Personalised recommendations