Advertisement

Journal of Meteorological Research

, Volume 33, Issue 3, pp 528–539 | Cite as

The Extra-Area Effect in 71 Cloud Seeding Operations during Winters of 2008–14 over Jiangxi Province, East China

  • Weijian Wang
  • Zhanyu YaoEmail author
  • Jianping Guo
  • Chao Tan
  • Shuo Jia
  • Wenhui Zhao
  • Pei Zhang
  • Liangshu Gao
Special Collection on Aerosol–Cloud–Radiation Interactions
  • 119 Downloads

Abstract

Effects of weather modification operations on precipitation in target areas have been widely reported, but little is specifically known about the downwind (extra-area) effects in China. We estimated the extra-area effect of an operational winter (November–February) aircraft cloud-seeding project in northern Jiangxi Province in eastern China by using a revised historical target/control regression analysis method based on the precipitation data in winter. The results showed that the overall seasonal average rainfall at the downwind stations increased by 21.67% (p = 0.0013). This enhancement effect was detected as far as 120 km away from the target area. Physical testing was used to compare the cloud characteristics before and after seeding on 29 November 2014. A posteriori analysis with respect to the characteristics of cloud units derived from operational weather radar data in Jiangxi was performed by tracking cloud units. Radar features in the target unit were enhanced relative to the control unit for more than two hours after the operational cloud seeding, which is indicative of the extra-area seeding effect. The findings could be used to help relieve water shortages in China.

Key words

cloud seeding extra-area effects radar derived rainfall characteristics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Biondini, R., J. Simpson, and W. Woodley, 1977: Empirical predictors for natural and seeded rainfall in the Florida area cumulus experiment (FACE), 1970–1975. J. Appl. Meteor., 16, 585–594, doi:  https://doi.org/10.1175/1520-0450(1977)016<0585:EPFNAS>2.0.CO;2.CrossRefGoogle Scholar
  2. Boe, B. A., J. A. Jr. Heimbach, T. W. Krauss, et al., 2014: The dispersion of silver iodide particles from ground-based generators over complex terrain. Part I: Observations with acoustic ice nucleus counters. J. Appl. Meteor. Climatol., 53, 1325–1341, doi:  https://doi.org/10.1175/JAMC-D-13-0240.1.CrossRefGoogle Scholar
  3. Breed, D., R. Rasmussen, C. Weeks, et al., 2014: Evaluating winter orographic cloud seeding: Design of the Wyoming Weather Modification Pilot Project (WWMPP). J. Appl. Meteor. Climatol., 33, 282–299, doi:  https://doi.org/10.1175/JAMC-D-13-0128.1.CrossRefGoogle Scholar
  4. Chu, X., L. L. Xue, B. Geerts, et al., 2014: A case study of radar observations and WRF LES simulations of the impact of ground-based glaciogenic seeding on orographic clouds and precipitation. Part I: Observations and model validations. J. Appl. Meteor. Climatol., 53, 2264–2286, doi:  https://doi.org/10.1175/JAMC-D-14-0017.1.CrossRefGoogle Scholar
  5. Ćurić, M., D. Janc, and V. Vučković, 2008: Precipitation change from a cumulonimbus cloud downwind of a seeded target area. J. Geophys. Res. Atmos., 113, D11215, doi:  https://doi.org/10.1029/2007JD009483.CrossRefGoogle Scholar
  6. DeFelice, T. P., J. Golden, D. Griffith, et al., 2014: Extra area effects of cloud seeding—An updated assessment. Atmos. Res., 135–136, 193–203, doi:  https://doi.org/10.1016/j.atmosres.2013.08.014.CrossRefGoogle Scholar
  7. Dennis, A. S., 1980: Weather modification by cloud seeding. Inter. Geophy. Seri, 24, 140–142.Google Scholar
  8. Dixon, M., and G. Wiener, 1993: TITAN: Thunderstorm identification, tracking, analysis, and nowcasting—A radar-based methodology. J. Atmos. Ocean. Technol., 10, 785–797, doi:  https://doi.org/10.1175/1520-0426(1993)010<0785:TTITAA>2.0.CO;2.CrossRefGoogle Scholar
  9. Elliott, R. D., and K. J. Brown, 1971: The Santa Barbara II project—Downwind effects. Proceedings of International Conference on Weather Modification, Australian Academy of Science, Canberra, 6–11.Google Scholar
  10. Gabriel, K. R., 1999: Ratio statistics for randomized experiments in precipitation stimulation. J. Appl. Meteor., 38, 290–301, doi:  https://doi.org/10.1175/1520-0450(1999)038<0290:RSFREI>2.0.CO;2.CrossRefGoogle Scholar
  11. Griffith, D. A., M. E. Solak, R. D. Almy, et al., 2005: The santa barbara cloud seeding project in coastal southern California, summary of results and their implications. J. Wea. Modif., 37, 21–27.Google Scholar
  12. Han, L., S. X. Fu, L. F. Zhao, et al., 2009: 3D convective storm identification, tracking, and forecasting—An enhanced TITAN algorithm. J. Atmos. Oceanic Technol., 26, 719–732, doi:  https://doi.org/10.1175/2008JTECHA1084.1.CrossRefGoogle Scholar
  13. Hobbs, P. V., and L. F. Radke, 1973: Redistribution of snowfall across a mountain range by artificial seeding: A case study. Science, 181, 1043–1045, doi:  https://doi.org/10.1126/science.181.4104.1043.CrossRefGoogle Scholar
  14. Jin, D. C., Z. Y. Guan, and W. Y. Tang, 2013: The extreme drought event during winter–spring of 2011 in East China: Combined influences of teleconnection in midhigh latitudes and thermal forcing in maritime continent region. J. Climate, 26, 8210–8222, doi:  https://doi.org/10.1175/JCLI-D-12-00652.1.CrossRefGoogle Scholar
  15. Jing, X. Q., B. Geerts, and B. Boe, 2016: The extra-area effect of orographic cloud seeding: Observational evidence of precipitation enhancement downwind of the target mountain. J. Appl. Meteor. Climatol., 55, 1409–1424, doi:  https://doi.org/10.1175/JAMC-D-15-0188.1.CrossRefGoogle Scholar
  16. Kessinger, C., S. Ellis, J. Vanandel, et al., 2003: The AP clutter mitigation scheme for the WSR-88D. 31st Conf. on Radar Meteorology, Amer. Meteor. Soc., Seattle, WA.Google Scholar
  17. Liu, L. P., L. L. Wu, and Y. M. Yang, 2007: Development of fuzzy-logical two-step ground clutter detection algorithm. Acta Meteor. Sinica, 65, 252–260, doi:  https://doi.org/10.11676/qxxb2007.024. (in Chinese)Google Scholar
  18. Long, A. B., 2001: Review of downwind extra-area effects of precipitation enhancement. J. Wea. Modif., 33, 24–45.Google Scholar
  19. Maier, D., R. Bertram, D. Klimm, et al., 2009: Influence of the atmosphere on the growth of LiYF4 single crystal fibers by the micro-pulling-down method. Cryst. Res. Technol., 44, 137–140, doi:  https://doi.org/10.1002/crat.200800400.CrossRefGoogle Scholar
  20. Marshall, J. S., and W. M. K. Palmer, 1948: The distribution of raindrops with size. J. Meteor., 5, 165–166, doi:  https://doi.org/10.1175/1520-0469(1948)005<0165:TDORWS>2.0.CO;2.CrossRefGoogle Scholar
  21. Nirel, R., and D. Rosenfeld, 1995: Estimation of the effect of operational seeding on rain amounts in Israel. J. Appl. Meteor., 34, 2220–2229, doi:  https://doi.org/10.1175/1520-0450(1995)034<2220:EOTEOO>2.0.CO;2.CrossRefGoogle Scholar
  22. Pokharel, B., B. Geerts, and X. Q. Jing, 2015: The impact of ground-based glaciogenic seeding on clouds and precipitation over mountains: A case study of a shallow orographic cloud with large supercooled droplets. J. Geophys. Res. Atmos., 120, 6056–6079, doi:  https://doi.org/10.1002/2014JD022693.CrossRefGoogle Scholar
  23. Silverman, B. A., 2001: A critical assessment of glaciogenic seeding of convective clouds for rainfall enhancement. Bull. Amer. Meteor. Soc., 82, 903–924, doi:  https://doi.org/10.1175/1520-0477(2001)082<0903:ACAOGS>2.3.CO;2.CrossRefGoogle Scholar
  24. Solak, M. E., D. P. Yorty, and D. A. Griffith, 2003: Estimations of downwind cloud seeding effects in Utah. J. Wea. Modif., 35, 52–58.Google Scholar
  25. Wise, E. A., 2005: Precipitation evaluation of the North Dakota Cloud Modification Project (NDCMP). Master dissertation, University North Dakota, Grand Forks, ND, 63.Google Scholar
  26. Woodley, W. L., and D. Rosenfeld, 2004: The development and testing of a new method to evaluate the operational cloud-seeding programs in Texas. J. Appl. Meteor., 43, 249–263, doi:  https://doi.org/10.1175/1520-0450(2004)043<0249:TDATOA<2.0.CO;2.CrossRefGoogle Scholar
  27. Woodley, W. L. D. Rosenfeld, and B. A. Silverman, 2003a: Results of on-top glaciogenic cloud seeding in Thailand. Part I: The demonstration experiment. J. Appl. Meteor., 42, 920–938, doi:  https://doi.org/10.1175/1520-0450(2003)042<0920:ROOGCS>2.0.CO;2.CrossRefGoogle Scholar
  28. Woodley, W. L., D. Rosenfeld, and B. A. Silverman, 2003b: Results of on-top glaciogenic cloud seeding in Thailand. Part II: Exploratory analyses. J. Appl. Meteor., 42, 939–951, doi:  https://doi.org/10.1175/1520-0450(2003)042<0939:ROOGCS>2.0.CO;2.CrossRefGoogle Scholar
  29. Xue, L. L., X. Chu, R. Rasmussen, et al., 2014: The dispersion of silver iodide particles from ground-based generators over complex terrain. Part II: WRF large-eddy simulations versus observations. J. Appl. Meteor. Climatol., 53, 1342–1361, doi:  https://doi.org/10.1175/JAMC-D-13-0241.1.CrossRefGoogle Scholar
  30. Yao, Z. Y., 2006: Review of weather modification research in Chinese Academy of Meteorological Sciences. J. Appl. Meteor. Sci., 17, 786–795, doi:  https://doi.org/10.3969/j.issn.1001-7313.2006.06.016. (in Chinese)Google Scholar
  31. Zhao, Z., and H. C. Lei, 2010: Numerical simulation of seeding extra-area effects of precipitation using a three-dimensional mesoscale model. Atmos. Ocean. Sei. Lett., 3, 19–24, doi:  https://doi.org/10.1080/16742834.2010.11446838.CrossRefGoogle Scholar

Copyright information

© The Chinese Meteorological Society and Springer-Verlag Berlin Heidelberg 2019

Authors and Affiliations

  • Weijian Wang
    • 1
    • 2
  • Zhanyu Yao
    • 1
    • 2
    Email author
  • Jianping Guo
    • 2
  • Chao Tan
    • 1
  • Shuo Jia
    • 1
  • Wenhui Zhao
    • 1
  • Pei Zhang
    • 1
  • Liangshu Gao
    • 1
  1. 1.Key Laboratory for Cloud Physics of China Meteorological AdministrationChinese Academy of Meteorological Sciences, China Meteorological AdministrationBeijingChina
  2. 2.State Key Laboratory of Severe WeatherChinese Academy of Meteorological Sciences, China Meteorological AdministrationBeijingChina

Personalised recommendations