Advertisement

Journal of Meteorological Research

, Volume 33, Issue 3, pp 501–518 | Cite as

Quality Control and Evaluation of the Observed Daily Data in the North American Soil Moisture Database

  • Weilin Liao
  • Dagang WangEmail author
  • Guiling Wang
  • Youlong Xia
  • Xiaoping Liu
Special Collection on Development and Applications of Regional and Global Land Data Assimilation Systems
  • 244 Downloads

Abstract

The North American Soil Moisture Database (NASMD) was initiated in 2011 to assemble and homogenize in situ soil moisture measurements from 32 observational networks in the United States and Canada encompassing more than 1800 stations. Although statistical quality control (QC) procedures have been applied in the NASMD, the soil moisture content tends to be systematically underestimated by in situ sensors in frozen soils, and using a single maximum threshold (i.e., 0.6 m3 m−3) may not be sufficient for robust QC because of the diverse soil textures in North America. In this study, based on the in situ soil porosity and North American Land Data Assimilation System phase 2 (NLDAS-2) Noah soil temperature, the simple automated QC method is revised to supplement the existing QC approach. This revised QC method is first validated based on the assessment at 78 of the Soil Climate Analysis Network (SCAN) stations where the manually checked data are available, and is then applied to all stations in the NASMD to produce a more strict quality-controlled dataset. The results show that the revised automated QC procedure can flag the spurious and erroneous soil moisture measurements for the SCAN stations, especially for those located in high altitudes and latitudes. Relative to station measurements in the original NASMD, the quality-controlled data show a slightly better agreement with the manually checked soil moisture content. It should be noted that this quality-controlled dataset may be over-flagged for some valid soil moisture measurements due to potential errors of the soil temperature and soil porosity data, and validation in this study is limited by the availability of benchmark soil moisture data. The updated QC and additional validation will be desirable to boost confidence in the product when high-quality data become available in the future.

Key words

North American Soil Moisture Database (NASMD) quality control soil moisture North American Land Data Assimilation System phase 2 (NLDAS-2) soil temperature soil porosity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

We thank the scientists who maintain the soil moisture networks used in this study. We appreciate Steven M. Quiring and his group for collecting in situ soil moisture observations to form NASMD. Without their efforts and support, it would be impossible to accomplish this work. We are also grateful to the four anonymous reviewers for their constructive comments that have improved this article significantly.

References

  1. Anderson, W. B., B. F. Zaitchik, C. R. Hain, et al., 2012: Towards an integrated soil moisture drought monitor for East Africa. Hydrol. Earth Syst. Sci., 16, 2893–2913, doi:  https://doi.org/10.5194/hess-16-2893-2012.CrossRefGoogle Scholar
  2. Balsamo, G., A. Beljaars, K. Scipal, et al., 2009: A revised hydrology for the ECMWF model: Verification from field site to terrestrial water storage and impact in the integrated forecast system. J. Hydrometeor., 10, 623–643, doi:  https://doi.org/10.1175/2008JHM1068.1.CrossRefGoogle Scholar
  3. Brocca, L., L. Ciabatta, C. Massari, et al., 2017: Soil moisture for hydrological applications: Open questions and new opportunities. Water, 9, 140, doi:  https://doi.org/10.3390/w9020140.CrossRefGoogle Scholar
  4. Cai, X. T., Z.-L. Yang, Y. L. Xia, et al., 2014: Assessment of simulated water balance from Noah, Noah-MP, CLM, and VIC over CONUS using the NLDAS test bed. J. Geophys. Res. Atmos., 119, 13751–13770, doi:  https://doi.org/10.1002/2014JD022113.CrossRefGoogle Scholar
  5. Collow, T. W., A. Robock, J. B. Basara, et al., 2012: Evaluation of SMOS retrievals of soil moisture over the central United States with currently available in situ observations. J. Geophys. Res. Atmos., 117, D09113, doi:  https://doi.org/10.1029/2011JD017095.CrossRefGoogle Scholar
  6. De Lannoy, G. J. M., and R. H. Reichle, 2016: Assimilation of SMOS brightness temperatures or soil moisture retrievals into a land surface model. Hydrol. Earth Syst. Sci., 20, 4895–4911, doi:  https://doi.org/10.5194/hess-20-4895-2016.CrossRefGoogle Scholar
  7. Dirmeyer, P. A., 2011: The terrestrial segment of soil moisture-climate coupling. Geophys. Res. Lett., 38, LI6702, doi:  https://doi.org/10.1029/2011GL048268.CrossRefGoogle Scholar
  8. Dorigo, W. A., W. Wagner, R Hohensinn, et al., 2011: The international soil moisture network: A data hosting facility for global in situ soil moisture measurements. Hydrol. Earth Syst. Sci., 15, 1675–1698, doi:  https://doi.org/10.5194/hess-15-1675-2011.CrossRefGoogle Scholar
  9. Dorigo, W. A., A. Xaver, M. Vreugdenhil, et al., 2013: Global automated quality control of in situ soil moisture data from the international soil moisture network. Vadose Zone J., 12, 1–21, doi:  https://doi.org/10.2136/VZJ2012.0097.CrossRefGoogle Scholar
  10. El Sharif, H., J. F. Wang, and A. P. Georgakakos, 2015: Modeling regional crop yield and irrigation demand using SMAP type of soil moisture data. J. Hydrometeor., 16, 904–916, doi:  https://doi.org/10.1175/JHM-D-14-0034.1.CrossRefGoogle Scholar
  11. Ford, T. W., and S. M. Quiring, 2014: In situ soil moisture coupled with extreme temperatures: A study based on the Oklahoma Mesonet. Geophys. Res. Lett., 41, 4727–4734, doi:  https://doi.org/10.1002/2014GL060949.CrossRefGoogle Scholar
  12. Gruhier, C., P. de Rosnay, S. Hasenauer, et al., 2010: Soil moisture active and passive microwave products: Intercomparison and evaluation over a Sahelian site. Hydrol. Earth Syst. Sci., 14, 141–156, doi:  https://doi.org/10.5194/hess-14-141-2010.CrossRefGoogle Scholar
  13. Hallikainen, M. T., F. T. Ulaby, M. C. Dobson, et al., 1985: Microwave dielectric behavior of wet soil-part 1: Empirical models and experimental observations. IEEE Trans. Geosci. Remote Sens., GE-23, 25–34, doi:  https://doi.org/10.1109/TGRS.1985.289497.CrossRefGoogle Scholar
  14. Holgate, C. M., R. A. M. De Jeu, A. I. J. M. van Dijk, et al., 2016: Comparison of remotely sensed and modelled soil moisture data sets across Australia. Remote Sens. Environ., 186, 479–500, doi:  https://doi.org/10.1016/j.rse.2016.09.015.CrossRefGoogle Scholar
  15. Kishné, A. S., Y. T. Yimam, C. L. S. Morgan, et al., 2017: Evaluation and improvement of the default soil hydraulic parameters for the Noah land surface model. Geoderma, 285, 247–259, doi:  https://doi.org/10.1016/j.geoderma.2016.09.022.CrossRefGoogle Scholar
  16. Koster, R. D., Y. H. Chang, H. L. Wang, et al., 2016: Impacts of local soil moisture anomalies on the atmospheric circulation and on remote surface meteorological fields during boreal summer: A comprehensive analysis over North America. J. Climate, 29, 7345–7364, doi:  https://doi.org/10.1175/JCLI-D-16-0192.1.CrossRefGoogle Scholar
  17. Kumar, S. V., C. D. Peters-Lidard, D. Mocko, et al., 2014a: Assimilation of remotely sensed soil moisture and snow depth retrievals for drought estimation. J. Hydrometeor., 15, 2446–2469, doi:  https://doi.org/10.1175/JHM-D-13-0132.1.CrossRefGoogle Scholar
  18. Kumar, S., P. A. Dirmeyer, D. M. Lawrence, et al., 2014b: Effects of realistic land surface initializations on subseasonal to seasonal soil moisture and temperature predictability in North America and in changing climate simulated by CCSM4. J. Geophys. Res. Atmos., 119, 13250–13270, doi:  https://doi.org/10.1002/2014JD022110.CrossRefGoogle Scholar
  19. Kumar, S. V., B. F. Zaitchik, C. D. Peters-Lidard, et al., 2016: Assimilation of gridded GRACE terrestrial water storage estimates in the North American land data assimilation system. J. Hydrometeor., 17, 1951–1972, doi:  https://doi.org/10.1175/JHM-D-15-0157.1.CrossRefGoogle Scholar
  20. Legates, D. R. R. Mahmood, D. F. Levia, et al., 2011: Soil moisture: A central and unifying theme in physical geography. Prog. Phys. Geog. Earth Environ., 35, 65–86, doi:  https://doi.org/10.1177/0309133310386514.CrossRefGoogle Scholar
  21. Liao, W. L., A. J. Rigden, and D. Li, 2018: Attribution of local temperature response to deforestation. J. Geophys. Res. Biogeosci., 123, 1572–1587, doi:  https://doi.org/10.1029/2018JG004401.CrossRefGoogle Scholar
  22. Liu, Q., R. H. Reichle, R. Bindlish, et al., 2011: The contributions of precipitation and soil moisture observations to the skill of soil moisture estimates in a land data assimilation system. J.Hydrometeor., 12, 750–765, doi:  https://doi.org/10.1175/JHM-D-10-05000.1.CrossRefGoogle Scholar
  23. Morgan, C. L. S., Y. T. Yimam, M. Barlage, et al., 2017: Valuing of soil capability in land surface modeling. Global Soil Security, D. J. Field, C. L. S. Morgan, and A. B. McBratney, Eds., Springer International Publishing, Cham, doi:  https://doi.org/10.1007/978-3-319-43394-3_5.Google Scholar
  24. Pal, J. S., and E. A. B. Eltahir, 2001: Pathways relating soil moisture conditions to future summer rainfall within a model of the land-atmosphere system. J. Climate, 14, 1227–1242, doi:  https://doi.org/10.1175/1520-0442(2001)014<1227:PRSMCT>2.0.CO;2.CrossRefGoogle Scholar
  25. Parrens, M., E. Zakharova, S. Lafont, et al., 2012: Comparing soil moisture retrievals from SMOS and ASCAT over France. Hydrol. Earth Syst. Sci., 16, 423–440, doi:  https://doi.org/10.5194/hess-16-423-2012.CrossRefGoogle Scholar
  26. Pozzi, W., J. Sheffield, R. Stefanski, et al., 2013: Toward global drought early warning capability: Expanding international cooperation for the development of a framework for monitoring and forecasting. Bull. Amer. Meteor. Soc., 94, 776–785, doi:  https://doi.org/10.1175/BAMS-D-11-00176.1.CrossRefGoogle Scholar
  27. Quiring, S. M., T. W. Ford, J. K. Wang, et al., 2016: The North American soil moisture database: Development and applications. Bull. Amer. Meteor. Soc., 97, 1441–1459, doi:  https://doi.org/10.1175/BAMS-D-13-00263.1.CrossRefGoogle Scholar
  28. Seneviratne, S. I., M. Wilhelm, T. Stanelle, et al., 2013: Impact of soil moisture-climate feedbacks on CMIP5 projections: First results from the GLACE-CMIP5 experiment. Geophys. Res. Lett., 40, 5212–5217, doi:  https://doi.org/10.1002/grl.50956.CrossRefGoogle Scholar
  29. Stéfanon, M., P. Drobinski, F. D’Andrea, et al., 2014: Soil moisture-temperature feedbacks at meso-scale during summer heat waves over Western Europe. Climate Dyn., 42, 1309–1324, doi:  https://doi.org/10.1007/s00382-013-1794-9.CrossRefGoogle Scholar
  30. Tang, C. L., and T. C. Piechota, 2009: Spatial and temporal soil moisture and drought variability in the Upper Colorado River Basin. J. Hydrol, 379, 122–135, doi:  https://doi.org/10.1016/j.jhydrol.2009.09.052.CrossRefGoogle Scholar
  31. Taylor, K. E., 2001: Summarizing multiple aspects of model performance in a single diagram. J. Geophys. Res. Atmos., 106, 7183–7192, doi:  https://doi.org/10.1029/2000JD900719.CrossRefGoogle Scholar
  32. Taylor, C. M., R. A. M. de Jeu, F. Guichard, et al., 2012: Afternoon rain more likely over drier soils. Nature, 489, 423–426, doi:  https://doi.org/10.1038/nature11377.CrossRefGoogle Scholar
  33. Wanders, N., D. Karssenberg, A. de Roo, et al., 2014: The suitability of remotely sensed soil moisture for improving operational flood forecasting. Hydrol. Earth Syst. Sci., 18, 2343–2357, doi:  https://doi.org/10.5194/hess-18-2343-2014.CrossRefGoogle Scholar
  34. Wang, A. H., D. P. Lettenmaier, and J. Sheffield, 2011: Soil moisture drought in China, 1950–2006. J. Climate, 24, 3257–3271, doi:  https://doi.org/10.1175/2011JCLI3733.1.CrossRefGoogle Scholar
  35. Wang, Z. L., P. W. Xie, C. G. Lai, et al., 2017: Spatiotemporal variability of reference evapotranspiration and contributing climatic factors in China during 1961–2013. J. Hydrol., 544, 97–108, doi:  https://doi.org/10.1016/j.jhydrol.2016.11.021.CrossRefGoogle Scholar
  36. Wu, X. S., S. L. Guo, J. B. Yin, et al., 2018: On the event-based extreme precipitation across China: Time distribution patterns, trends, and return levels. J. Hydrol., 562, 305–317, doi:  https://doi.org/10.1016/j.jhydrol.2018.05.028.CrossRefGoogle Scholar
  37. Xia, Y. L., K. Mitchell, M. Ek, et al., 2012a: Continental-scale water and energy flux analysis and validation for the North American Land Data Assimilation System project phase 2 (NLDAS-2): 1. Intercomparison and application of model products. J. Geophys. Res. Atmos., 117, D03109, doi:  https://doi.org/10.1029/2011JD016048.Google Scholar
  38. Xia, Y. L., K. Mitchell, M. Ek, et al., 2012b: Continental-scale water and energy flux analysis and validation for North American Land Data Assimilation System project phase 2 (NLDAS-2): 2. Validation of model-simulated streamflow. J. Geophys. Res. Atmos., 117, D03110, doi:  https://doi.org/10.1029/2011JD016051.Google Scholar
  39. Xia, Y. L., M. Ek, J. Sheffield, et al., 2013: Validation of Noah-simulated soil temperature in the North American Land Data Assimilation System phase 2. J. Appl. Meteor. Climatol., 52, 455–471, doi:  https://doi.org/10.1175/JAMC-D-12-033.1.CrossRefGoogle Scholar
  40. Xia, Y. L., J. Sheffield, M. B. Ek, et al., 2014: Evaluation of multi-model simulated soil moisture in NLDAS-2. J. Hydrol., 512, 107–125, doi:  https://doi.org/10.1016/j.jhydrol.2014.02.027.CrossRefGoogle Scholar
  41. Xia, Y. L., M. B. Ek, Y. H. Wu, et al., 2015a: Comparison of NLDAS-2 simulated and NASMD observed daily soil moisture. Part I: Comparison and analysis. J. Hydrometeor., 16, 1962–1980, doi:  https://doi.org/10.1175/JHM-D-14-0096.1.CrossRefGoogle Scholar
  42. Xia, Y. L., M. B. Ek, Y. H. Wu, et al., 2015b: Comparison of NLDAS-2 simulated and NASMD observed daily soil moisture. Part II: Impact of soil texture classification and vegetation type mismatches. J. Hydrometeor., 16, 1981–2000, doi:  https://doi.org/10.1175/JHM-D-14-0097.1.CrossRefGoogle Scholar
  43. Xia, Y. L., T. W. Ford, Y. H. Wu, et al., 2015c: Automated quality control of in situ soil moisture from the North American soil moisture database using NLDAS-2 products. J. Appl. Meteor. Climatol., 54, 1267–1282, doi:  https://doi.org/10.1175/JAMC-D-14-0275.1.CrossRefGoogle Scholar

Copyright information

© The Chinese Meteorological Society and Springer-Verlag Berlin Heidelberg 2019

Authors and Affiliations

  • Weilin Liao
    • 1
    • 2
  • Dagang Wang
    • 1
    • 2
    • 3
    Email author
  • Guiling Wang
    • 4
  • Youlong Xia
    • 5
  • Xiaoping Liu
    • 1
    • 2
  1. 1.School of Geography and PlanningSun Yat-sen UniversityGuangzhouChina
  2. 2.Guangdong Key Laboratory for Urbanization and Geo-simulationSun Yat-sen UniversityGuangzhouChina
  3. 3.Key Laboratory of Water Cycle and Water Security in Southern China of Guangdong High Education InstituteSun Yat-sen UniversityGuangzhouChina
  4. 4.Department of Civil and Environmental EngineeringUniversity of ConnecticutStorrsUSA
  5. 5.I. M. Systems Group, Environmental Modeling CenterNational Centers for Environmental PredictionCollege ParkUSA

Personalised recommendations