Advertisement

Journal of Meteorological Research

, Volume 33, Issue 4, pp 627–650 | Cite as

Representation of the Madden–Julian Oscillation in CAMS-CSM

  • Pengfei Ren
  • Li GaoEmail author
  • Hong-Li Ren
  • Xinyao Rong
  • Jian Li
Special Collectionon CAMS-CSM
  • 8 Downloads

Abstract

The Madden-Julian Oscillation (MJO) has a significant impact on global weather and climate and can be used as a predictability resource in extended-term forecasting. We evaluate the ability of the Chinese Academy of Meteorological Sciences Climate System Model (CAMS-CSM) to represent the MJO by using the diagnostic method proposed by the US Climate Variability and Predictability Program (CLIVAR) MJO Working Group (MJOWG). In general, the model simulates some major characteristics of MJO well, such as the seasonality characteristics and geographical dependence, the intensity of intraseasonal variability (ISV), dominant periodicity, propagation characteristics, coherence between outgoing longwave radiation (OLR) and wind, and life cycle of MJO signals. However, there are a few biases in the model when compared with observational/reanalyzed data. These include an overestimate of precipitation in the convergence zone of the North and South Pacific, a slightly weaker eastward propagation, and a shift in the dominant periodicity toward lower frequencies with slower speeds of eastward propagation. The model gives a poor simulation of the northward propagation of MJO in summer and shows less coherence between the MJO convection and wind. The role of moistening in the planetary boundary layer (PBL) in the eastward/northward propagation of MJO was also explored. An accurate representation of the vertical titling structure of moisture anomalies in CAMS-CSM leads to moistening of the PBL ahead of convection, which accounts for the eastward/northward propagation of MJO. Poor simulation of the vertical structure of the wind and moisture anomalies in the western Pacific leads to a poor simulation of the northward propagation of MJO in this area. Budget analysis of the PBL integral moisture anomalies shows that the model gives a good simulation of the moisture charging process ahead of MJO convection and that the zonal advection of moisture convergence term has a primary role in the detour of MJO over the Maritime Continent.

Key words

Madden-Julian Oscillation CAMS-CSM simulations budget analysis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

The authors thank the Chinese Academy of Meteorological Sciences for providing the model data. The authors also thank the two reviewers for their constructive comments on this paper.

References

  1. Adames, Á. F., J. M. Wallace, and J. M. Monteiro, 2016: Seasonality of the structure and propagation characteristics of the MJO. J. Atmos. Sci., 73, 3511–3526, doi:  https://doi.org/10.1175/jas-d-15-0232.1.CrossRefGoogle Scholar
  2. Ahn, M. S., D. Kim, K. R. Sperber, et al., 2017: MJO simulation in CMIP5 climate models: MJO skill metrics and process-oriented diagnosis. Climate Dyn., 49, 4023–1045, doi:  https://doi.org/10.1007/s00382-017-3558-4.CrossRefGoogle Scholar
  3. Ajayamohan, R. S., and B. N. Goswami, 2007: Dependence of simulation of boreal summer tropical intraseasonal oscillations on the simulation of seasonal mean. J. Atmos. Sci., 64, 460–178, doi:  https://doi.org/10.1175//as3844.1.CrossRefGoogle Scholar
  4. Annamalai, H., and K. R. Sperber, 2005: Regional heat sources and the active and break phases of boreal summer intraseasonal (30–50 day) variability. J. Atmos. Sci., 62, 2726–2748, doi:  https://doi.org/10.1175/jas3504.1.CrossRefGoogle Scholar
  5. Barlow, M., M. Wheeler, B. Lyon, et al., 2005: Modulation of daily precipitation over Southwest Asia by the Madden-Julian Oscillation. Mon. Wea. Rev., 133, 3579–3594, doi:  https://doi.org/10.1175/Mwr3026.1.CrossRefGoogle Scholar
  6. Bessafi, M., and M. C. Wheeler, 2006: Modulation of south Indian Ocean tropical cyclones by the Madden-Julian Oscillation and convectively coupled equatorial waves. Mon. Wea. Rev., 134, 638–656, doi:  https://doi.org/10.1175/mwr3087.1.CrossRefGoogle Scholar
  7. Bond, N. A., and G. A. Vecchi, 2003: The influence of the Madden-Julian Oscillation on precipitation in Oregon and Washington. Wea. Forecasting, 18, 600–613, doi:  https://doi.org/10.1175/1520-0434(2003)018<0600:tiotmo>2.0.co;2.CrossRefGoogle Scholar
  8. Brown, A., S. Milton, M. Cullen, et al., 2012: Unified modeling and prediction of weather and climate: A 25-year journey. Bull. Amer. Meteor. Soc., 93, 1865–1877, doi:  https://doi.org/10.1175/bams-d-12-00018.1.CrossRefGoogle Scholar
  9. Dai, Y. J., X. B. Zeng, R. E. Dickinson, et al., 2003: The common land model. Bull. Amer. Meteor. Soc., 84, 1013–1024, doi:  https://doi.org/10.1175/bams-84-8-1013.CrossRefGoogle Scholar
  10. Dee, D. P., S. M. Uppala, A. J. Simmons, et al., 2011: The ERA-interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553–597, doi:  https://doi.org/10.1002/qj.828.CrossRefGoogle Scholar
  11. Diamond, H. J., and J. A. Renwick, 2015: The climatological relationship between tropical cyclones in the southwest pacific and the Madden-Julian Oscillation. Int. J. Climatol., 35, 676–686, doi:  https://doi.org/10.1002/joc.4012.CrossRefGoogle Scholar
  12. Duchon, C. E., 1979: Lanczos filtering in one and two dimensions. J. Appl. Meteor., 18, 1016–1022, doi:  https://doi.org/10.1175/1520-0450(1979)018<1016:lfioat>2.0.co;2.CrossRefGoogle Scholar
  13. Fu, X. H., and B. Wang, 2004: Differences of boreal summer intraseasonal oscillations simulated in an atmosphere-ocean coupled model and an atmosphere-only model. J. Climate, 17, 1263–1271, doi:  https://doi.org/10.1175/1520-0442(2004)017<1263:dobsio>2.0.co;2.CrossRefGoogle Scholar
  14. Gualdi, S., A. Navarra, and H. Von Storch, 1997: Tropical in-traseasonal oscillation appearing in operational analyses and in a family of general circulation models. J. Atmos. Sci., 54, 1185–1202, doi:  https://doi.org/10.1175/1520-0469(1997)054<1185:TIOAIO>2.0.CO;2.CrossRefGoogle Scholar
  15. Griffies, S. M., M. J. Harrison, R. C. Pacanowski, et al., 2004: A Technical Guide to MOM4. GFDL Ocean Group Technical Report No. 5, NOAA/Geophysical Fluid Dynamics Laboratory, Princeton NJ, 339 pp.Google Scholar
  16. Hayashi, Y., 1979: A generalized method of resolving transient disturbances into standing and traveling waves by space-time spectral analysis. J. Atmos. Sci., 36, 1017–1029, doi:  https://doi.org/10.1175/1520-0469(1979)036<1017:agmort>2.0.co;2.CrossRefGoogle Scholar
  17. Hayashi, Y., and D. G. Golder, 1986: Tropical intraseasonal oscilations appearing in a GFDL general circulation model and FGGE data. Part I: Phase propagation. J. Atmos. Sci., 43, 3058–3067, doi: 10.115511220-4699(1866)443<0588:TIOAIA>2.0.CO;2.CrossRefGoogle Scholar
  18. Hendon, H. H., and B. Liebmann, 1990: The intraseasonal (30–50 day) oscillation of the Australian summer monsoon. J. Atmos. Sci., 47, 2909–2924, doi:  https://doi.org/10.1175/1200-4699(1900)477<2909:tidoot>2.0.co;2.CrossRefGoogle Scholar
  19. Hendon, H. H., and M. L. Salby, 1994: The life cycle of the Madden-Julian Oscillation. J. Atmos. Sci., 51, 2225–2237, doi:  https://doi.org/10.1175/1520-0469(1994)051<2225:tlcotm>2.0.co;2.CrossRefGoogle Scholar
  20. Hendon, H. H., and M. C. Wheeler, 2008: Some space-time spectral analyses of tropical convection and planetary-scale waves. J. Atmos. Sci., 65, 2936–2948, doi:  https://doi.org/10.1175/3238.1.jas2675.1.CrossRefGoogle Scholar
  21. Hsu, P.-C., and T. Li, 2012: Role of the boundary layer moisture asymmetry in causing the eastward propagation of the Madden-Julian Oscillation. J. Climate, 25, 4914–4931, doi:  https://doi.org/10.1175/jcli-d-11-00310.1.CrossRefGoogle Scholar
  22. Hsu, P.-C., J.-Y. Lee, and K.-J. Ha, 2016: Influence of boreal summer intraseasonal oscillation on rainfall extremes in southern China. Int. J. Climatol., 36, 1403–1412, doi:  https://doi.org/10.1002/joc.4433.CrossRefGoogle Scholar
  23. Hung, M.-P., J.-L. Lin, W. Q. Wang, et al., 2013: MJO and convectively coupled equatorial waves simulated by CMIP5 climate models. J. Climate, 26, 6185–6214, doi:  https://doi.org/10.1175/jcli-d-12-00541.1.CrossRefGoogle Scholar
  24. Hurrell, J., G. A. Meehl, D. Bader, et al., 2009: A unified modeling approach to climate system prediction. Bull. Amer. Meteor. Soc., 90, 1819–1832, doi:  https://doi.org/10.1175/2009bams2752.1.CrossRefGoogle Scholar
  25. Inness, P. M., and J. M. Slingo, 2003: Simulation of the Madden-Julian Oscillation in a coupled general circulation model. Part I: Comparison with observations and an atmosphere-only GCM. J. Climate, 16, 345–364, doi:  https://doi.org/10.1175/1520-0442(2003)016<0345:sotmjo>2.0.co;2.CrossRefGoogle Scholar
  26. Inness, P. M., J. M. Slingo, S. J. Woolnough, et al., 2001: Organization of tropical convection in a GCM with varying vertical resolution; implications for the simulation of the Madden-Julian Oscillation. Climate Dyn., 17, 777–793, doi:  https://doi.org/10.1007/s003820000148.CrossRefGoogle Scholar
  27. Inness, P. M., J. M. Slingo, E. Guilyardi, et al., 2003: Simulation of the Madden-Julian Oscillation in a coupled general circulation model. Part II: The role of the basic state. J. Climate, 16, 365–382, doi:  https://doi.org/10.1175/1520-0442(2003)016<0365:sotmjo>2.0.co;2.CrossRefGoogle Scholar
  28. Jeong, J.-H., C.-H. Ho, B.-M. Kim, et al., 2005: Influence of the Madden-Julian Oscillation on wintertime surface air temperature and cold surges in East Asia. J. Geophys. Res. Atmos., 110, D11104, doi:  https://doi.org/10.1029/2004jd005408.CrossRefGoogle Scholar
  29. Jia, X. L., C. Y. Li, J. Ling, et al., 2008: Impacts of a GCM’s resolution on MJO simulation. Adv. Atmos. Sci., 22, 139–156, doi:  https://doi.org/10.1007/s00376-008-0139-9.CrossRefGoogle Scholar
  30. Jiang, X. A., 2017: Key processes for the eastward propagation of the Madden-Julian Oscillation based on multimodel simulations. J. Geophys. Res. Atmos., 122, 755–770, doi:  https://doi.org/10.1002/2016jd025955.CrossRefGoogle Scholar
  31. Jiang, X. A., D. E. Waliser, J.-L. Li, et al., 2011: Vertical cloud structures of the boreal summer intraseasonal variability based on CloudSat observations and ERA-interim reanalysis. Climate Dyn., 36, 2219–2232, doi:  https://doi.org/10.1007/s00382-010-0853-8.CrossRefGoogle Scholar
  32. Jiang, X. A., D. E. Waliser, P. K. Xavier, et al., 2015: Vertical structure and physical processes of the Madden-Julian Oscillation: Exploring key model physics in climate simulations. J. Geophys. Res. Atmos., 120, 4718–4748, doi:  https://doi.org/10.1002/2014jd022375.CrossRefGoogle Scholar
  33. Jones, C., 2000: Occurrence of extreme precipitation events in California and relationships with the Madden-Julian Oscillation. J. Climate, 13, 3576–3587, doi:  https://doi.org/10.1175/1520-0442(2000)013<3576:ooepei>2.0.co;2.CrossRefGoogle Scholar
  34. Jones, C., D. E. Waliser, K. M. Lau, et al., 2004: Global occurrences of extreme precipitation and the Madden-Julian Oscillation: Observations and predictability. J. Climate, 17, 4575–4589, doi:  https://doi.org/10.1175/3238.1.CrossRefGoogle Scholar
  35. Kemball-Cook, S., and B. Wang, 2001: Equatorial waves and air-sea interaction in the boreal summer intraseasonal oscillation. J. Climate, 44, 2923–2942, doi:  https://doi.org/10.1175/1520-0442(2001)014<2923:ewaasi>2.0.co;2.CrossRefGoogle Scholar
  36. Kemball-Cook, S., B. Wang, and X. H. Fu, 2002: Simulation of the intraseasonal oscillation in the ECHAM-4 model: The impact of coupling with an ocean model. J. Atmos. Sci., 29, 1433–1453, doi:  https://doi.org/10.1175/1520-0469(2002)059<1433:sotioi>2.0.co;2.CrossRefGoogle Scholar
  37. Kikuchi, K., and Y. N. Takayabu, 2004: The development of organized convection associated with the MJO during TOGA COARE IOP: Trimodal characteristics. Geophys. Res. Lett., 31, L10101, doi:  https://doi.org/10.1029/2004gl019601.CrossRefGoogle Scholar
  38. Kiladis, G. N., K. H. Straub, and P. T. Haertel, 2005: Zonal and vertical structure of the Madden-Julian Oscillation. J. Atmos. Sci., 62, 2790–2809, doi:  https://doi.org/10.1175/jas3520.1.CrossRefGoogle Scholar
  39. Kim, D., H. Kim, and M.-I. Lee, 2017: Why does the MJO detour the maritime continent during austral summer? Geophys. Res. Lett., 44, 2579–2587, doi:  https://doi.org/10.1002/2017gl072643.CrossRefGoogle Scholar
  40. Kim, D., K. Sperber, W. Stern, et al., 2009: Application of MJO simulation diagnostics to climate models. J. Climate, 22, 6413–6436, doi:  https://doi.org/10.1175/2009jcli3063.1.CrossRefGoogle Scholar
  41. Klotzbach, P. J., 2010: On the Madden-Julian Oscillation-Atlantic hurricane relationship. J. Climate, 23, 282–293, doi:  https://doi.org/10.1175/2009jcli2978.1.CrossRefGoogle Scholar
  42. Krishnamurti, T. N., and D. Subrahmanyam, 1982: The 30–50 day mode at 850 mb during MONEX. J. Atmos. Sci., 39, 2088–2095, doi:  https://doi.org/10.1175/1520-0469(1982)039<2088;tdmamd>2.0.co;2.CrossRefGoogle Scholar
  43. Lau, K.-M., and P. H. Chan, 1986: Aspects of the 40–50 day oscillation during the northern summer as inferred from outgoing longwave radiation. Mon. Wea. Rev., 114, 1354–1367, doi:  https://doi.org/10.1175/1520-0493(1986)114<1354:aotdod>2.0.co;2.CrossRefGoogle Scholar
  44. Lee, J.-Y., B. Wang, M. C. Wheeler, et al., 2013: Real-time multivariate indices for the boreal summer intraseasonal oscillation over the Asian summer monsoon region. Climate Dyn., 40, 493–509, doi:  https://doi.org/10.1007/s00382-012-1544-4.CrossRefGoogle Scholar
  45. Lee, S.-S., J.-Y. Moon, B. Wang, et al., 2017: Subseasonal prediction of extreme precipitation over Asia: Boreal summer in-traseasonal oscillation perspective. J. Climate, 30, 2849–2865, doi:  https://doi.org/10.1175/jcli-d-16-0206.1.CrossRefGoogle Scholar
  46. Li, C. Y., X. L. Jia, J. Ling, et al., 2009: Sensitivity of MJO simulations to diabatic heating profiles. Climate Dyn., 32, 167–187, doi:  https://doi.org/10.1007/s00382-008-0455-x.CrossRefGoogle Scholar
  47. Li, X. J., Y. M. Tang, L. Zhou, et al., 2016: Assessment of Mad-den-Julian oscillation simulations with various configurations of CESM. Climate Dyn., 47, 2667–2690, doi:  https://doi.org/10.1007/s00382-016-2991-0.CrossRefGoogle Scholar
  48. Liebmann, B., and C. A. Smith, 1996: Description of a complete (interpolated) outgoing longwave radiation dataset. Bull. Amer. Meteor. Soc., 77, 1275–1277.Google Scholar
  49. Liebmann, B., H. H. Hendon, and J. D. Glick, 1994: The relationship between tropical cyclones of the western pacific and Indian oceans and the Madden-Julian Oscillation. J. Meteor. Soc. Japan, 72, 401–112, doi:  https://doi.org/10.2151/jmsj1965.72.3_401.CrossRefGoogle Scholar
  50. Lin, H., 2015: Subseasonal variability of North American winter-time surface air temperature. Climate Dyn., 45, 1137–1155, doi:  https://doi.org/10.1007/s00382-014-2363-6.CrossRefGoogle Scholar
  51. Lin, J.-L., G. N. Kiladis, B. E. Mapes, et al., 2006: Tropical in-traseasonal variability in 14 IPCC AR4 climate models. Part I: Convective signals. J. Climate, 19, 2665–2690, doi:  https://doi.org/10.1175/jcli3735.1.CrossRefGoogle Scholar
  52. Lorenz, D. J., and D. L. Hartmann, 2006: The effect of the MJO on the North American monsoon. J. Climate, 19, 333–343, doi:  https://doi.org/10.1175/jcli3684.1.CrossRefGoogle Scholar
  53. Madden, R. A., and P. R. Julian, 1971: Detection of a 40–50 day oscillation in the zonal wind in the tropical pacific. J. Atmos. Sci., 28, 702–708, doi:  https://doi.org/10.1175/1520-0469(1971)028<0702:doadoi>2.0.co;2.CrossRefGoogle Scholar
  54. Madden, R. A., and P. R. Julian, 1972: Description of global-scale circulation cells in the tropics with a 40–50 day period. J. Atmos. Sci., 29, 1109–1123, doi:  https://doi.org/10.1175/1520-0469(1972)029<1109:dogscc>2.0.co;2.CrossRefGoogle Scholar
  55. Majda, A. J., and Q. Yang, 2016: A multiscale model for the in-traseasonal impact of the diurnal cycle over the maritime continent on the Madden-Julian Oscillation. J. Atmos. Sci., 73, 579–604, doi:  https://doi.org/10.1175/jas-d-15-0158.1.CrossRefGoogle Scholar
  56. Maloney, E. D., and D. L. Hartmann, 1998: Frictional moisture convergence in a composite life cycle of the Madden-Julian Oscillation. J. Climate, 11, 2387–2403, doi:  https://doi.org/10.1175/1520-0442(1998)011<2387:fmciac>2.0.co;2.CrossRefGoogle Scholar
  57. Maloney, E. D., and D. L. Hartmann, 2000: Modulation of eastern North Pacific hurricanes by the Madden-Julian Oscillation. J. Climate, 13, 1451–1460, doi:  https://doi.org/10.1175/1520-0442(2000)013<1451:moenph>2.0.co;2.CrossRefGoogle Scholar
  58. Maloney, E. D., and D. L. Hartmann, 2001: The sensitivity of in-traseasonal variability in the NCAR CCM3 to changes in convective parameterization. J. Climate, 14, 2015–2034, doi:  https://doi.org/10.1175/1520-0442(2001)014<2015:tsoivi>2.0.co;2.CrossRefGoogle Scholar
  59. Maloney, E. D., and A. H. Sobel, 2004: Surface fluxes and ocean coupling in the tropical intraseasonal oscillation. J. Climate, 17, 4368–4386, doi:  https://doi.org/10.1175/jcli-3212.1.CrossRefGoogle Scholar
  60. Neena, J. M., D. Waliser, and X. N. Jiang, 2017: Model performance metrics and process diagnostics for boreal summer in-traseasonal variability. Climate Dyn., 48, 1661–1683, doi:  https://doi.org/10.1007/s00382-016-3166-8.CrossRefGoogle Scholar
  61. North, G. R., T. L. Bell, R. F. Cahalan, et al., 1982: Sampling errors in the estimation of empirical orthogonal functions. Mon. Wea. Rev., 110, 699–706, doi:  https://doi.org/10.1175/1520-0493(1982)110<0699:SEITEO>2.0.CO;2.CrossRefGoogle Scholar
  62. Paegle, J. N., L. A. Byerle, and K. C. Mo, 2000: Intraseasonal modulation of South American summer precipitation. Mon. Wea. Rev., 128, 837–850, doi:  https://doi.org/10.1175/1520-0493(2000)128<0837:imosas>2.0.co;2.CrossRefGoogle Scholar
  63. Ren, H.-L., and P. F. Ren, 2017: Impact of Madden-Julian Oscillation upon winter extreme rainfall in Southern China: Observations and predictability in CFSv2. Atmosphere, 8, 192, doi:  https://doi.org/10.3390/atmos8100192.CrossRefGoogle Scholar
  64. Ren H. L., J. Wu, C. B. Zhao, et al., 2015: Progresses of MJO prediction researches and developments. J. Appl. Meteor. Sci., 26, 658–668. (in Chinese)Google Scholar
  65. Ren, H.-L., J. Wu, C.-B. Zhao, et al., 2016: MJO ensemble prediction in BCC-CSM1.1(m) using different initialization schemes. Atmos. Oceanic Sci. Lett., 9, 60–65, doi:  https://doi.org/10.1080/16742834.2015.1116217.CrossRefGoogle Scholar
  66. Ren, H.-L., F. F. Jin, L. C. Song, et al., 2017: Prediction of primary climate variability modes at the Beijing Climate Center. J. Meteor. Res., 31, 204–223, doi:  https://doi.org/10.1007/s13351-017-6097-3.CrossRefGoogle Scholar
  67. Ren, P. F., H.-L. Ren, J.-X. Fu, et al., 2018: Impact of boreal summer intraseasonal oscillation on rainfall extremes in south-eastern China and its predictability in CFSv2. J. Geophys. Res. Atmos., 123, 4423–4442, doi:  https://doi.org/10.1029/2017JD028043.CrossRefGoogle Scholar
  68. Roeckner, E., G. Bäuml, L. Bonaventura, et al., 2003: The Atmospheric General Circulation Model ECHAM5. Part I: Model Description. MPI-Report 349, Max Planck Institute for Meteorology, Hamburg, Germany, 127 pp.Google Scholar
  69. Rong, X. Y., J. Li, H. M. Chen, et al., 2018: The CAMS climate system model and a basic evaluation of its climatology and climate variability simulation. J. Meteor. Res., 32, 839–861, doi:  https://doi.org/10.1007/s13351-018-8058-x.CrossRefGoogle Scholar
  70. Salby, M. L., R. R. Garcia, and H. H. Hendon, 1994: Planetaryscale circulations in the presence of climatological and wave-induced heating. J. Atmos. Sci., 51, 2344–2367, doi:  https://doi.org/10.1175/1520-0469(1994)051<2344:pscitp>2.0.co;2.CrossRefGoogle Scholar
  71. Slingo, J. M., K. R. Sperber, J. S. Boyle, et al., 1996: Intraseasonal oscillations in 15 atmospheric general circulation models: Results from an AMIP diagnostic subproject. Climate Dyn., 12, 325–357, doi:  https://doi.org/10.1007/bf00231106.CrossRefGoogle Scholar
  72. Sperber, K. R., 2003: Propagation and the vertical structure of the Madden-Julian Oscillation. Mon. Wea. Rev., 131, 3018–3037, doi:  https://doi.org/10.1175/1520-0493(2003)131<3018:patvso>2.0.co;2.CrossRefGoogle Scholar
  73. Sperber, K. R., 2004: Madden-Julian variability in NCAR CAM2.0 and CCSM2.0. Climate Dyn., 23, 259–278, doi:  https://doi.org/10.1007/s00382-004-0447-4.CrossRefGoogle Scholar
  74. Sperber, K. R., and H. Annamalai, 2008: Coupled model simulations of boreal summer intraseasonal (30–50 day) variability, Part 1: Systematic errors and caution on use of metrics. Climate Dyn., 31, 345–372, doi:  https://doi.org/10.1007/s00382-008-0367-9.CrossRefGoogle Scholar
  75. Sperber, K. R., S. Gualdi, S. Legutke, et al., 2005: The Madden-Julian Oscillation in ECHAM4 coupled and uncoupled general circulation models. Climate Dyn., 25, 117–140, doi:  https://doi.org/10.1007/s00382-005-0026-3.CrossRefGoogle Scholar
  76. Subramanian, A. C., M. Jochum, A. J. Miller, et al., 2011: The Madden-Julian oscillation in CCSM4. J. Climate, 24, 6261–6282, doi:  https://doi.org/10.1175/jcli-d-11-00031.1.CrossRefGoogle Scholar
  77. Sultan, B., S. Janicot, and A. Diedhiou, 2003: The West African monsoon dynamics. Part I: Documentation of intraseasonal variability. J. Climate, 16, 3389–3406, doi:  https://doi.org/10.1175/1520-0442(2003)016<3389:twamdp>2.0.co;2.CrossRefGoogle Scholar
  78. Waliser, D., K. Sperber, H. Hendon, et al., 2009: MJO simulation diagnostics. J. Climate, 22, 3006–3030, doi:  https://doi.org/10.1175/2008jcli2731.1.CrossRefGoogle Scholar
  79. Wang, B., 1988: Dynamics of tropical low-frequency waves: An analysis of the moist Kelvin wave. J. Atmos. Sci., 45, 2051–2065, doi:  https://doi.org/10.1175/1520-0469(1988)045<2051:dotlfw>2.0.co;2.CrossRefGoogle Scholar
  80. Wang, B., and T. M. Li, 1994: Convective interaction with boundary-layer dynamics in the development of a tropical in-traseasonal system. J. Atmos. Sci., 51, 1386–1400, doi:  https://doi.org/10.1175/1520-0469(1994)051<1386:ciwbld>2.0.co;2.CrossRefGoogle Scholar
  81. Wang, B., and X. S. Xie, 1998: Coupled modes of the warm pool climate system. Part I: The role of air-sea interaction in maintaining Madden-Julian Oscillation. J. Climate, 11, 2116–2135, doi:  https://doi.org/10.1175/1520-0442-11.8.2116.CrossRefGoogle Scholar
  82. Wang, W. Q., and M. E. Schlesinger, 1999: The dependence on convection parameterization of the tropical intraseasonal oscillation simulated by the UIUC 11-layer atmospheric GCM. J. Climate, 12, 1423–1457, doi:  https://doi.org/10.1175/1520-0442(1999)012<1423:TDOCPO>2.0.CO;2.CrossRefGoogle Scholar
  83. Watterson, I. G., and J. Syktus, 2007: The influence of air-sea interaction on the Madden-Julian Oscillation: The role of the seasonal mean state. Climate Dyn., 28, 703–722, doi:  https://doi.org/10.1007/s00382-006-0206-9.CrossRefGoogle Scholar
  84. Wheeler, M., and G. N. Kiladis, 1999: Convectively coupled equatorial waves: Analysis of clouds and temperature in the wavenumber-frequency domain. J. Atmos. Sci., 56, 374–399, doi:  https://doi.org/10.1175/1520-0469(1999)056<0374:CCEWAO>2.0.CO;2.CrossRefGoogle Scholar
  85. Wheeler, M. C., and H. H. Hendon, 2004: An all-season real-time multivariate MJO index: Development of an index for monitoring and prediction. Mon. Wea. Rev., 132, 1917–1932, doi:  https://doi.org/10.1175/1520-0493(2004)132<1917:Aarmmi>2.0.Co;2.CrossRefGoogle Scholar
  86. Wheeler, M. C., H. H. Hendon, S. Cleland, et al., 2009: Impacts of the Madden-Julian Oscillation on Australian rainfall and circulation. J. Climate, 22, 1482–1498, doi:  https://doi.org/10.1175/2008jcli2595.1.CrossRefGoogle Scholar
  87. Wu, C.-H., and H.-H. Hsu, 2009: Topographic influence on the MJO in the maritime continent. J. Climate, 22, 5433–5448, doi:  https://doi.org/10.1175/2009jcli2825.1.CrossRefGoogle Scholar
  88. Wu, J., H.-L. Ren, J. Q. Zuo, et al., 2016: MJO prediction skill, predictability, and teleconnection impacts in the Beijing Climate Center atmospheric general circulation model. Dyn. Atmos. Oceans, 75, 78–90, doi:  https://doi.org/10.1016/j.dynatmoce.2016.06.001.CrossRefGoogle Scholar
  89. Xavier, P., R. Rahmat, W. K. Cheong, et al., 2014: Influence of Madden-Julian Oscillation on Southeast Asia rainfall extremes: Observations and predictability. Geophys. Res. Lett., 41, 4406–4412, doi:  https://doi.org/10.1002/2014gl060241.CrossRefGoogle Scholar
  90. Xie, P. P., and P. A. Arkin, 1997: Global precipitation: A 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull. Amer. Meteor. Soc., 78, 2539–2558, doi:  https://doi.org/10.1175/1520-0477(1997)078<2539:gpayma>2.0.co;2.CrossRefGoogle Scholar
  91. Yasunari, T., 1979: Cloudiness fluctuations associated with the Northern Hemisphere summer monsoon. J. Meteor. Soc. Japan, 57, 227–242, doi:  https://doi.org/10.2151/jmsj1965.57.3_227.CrossRefGoogle Scholar
  92. Yasunari, T., 1980: A quasi-stationary appearance of 30 to 40 day period in the cloudiness fluctuations during the summer monsoon over India. J. Meteor. Soc. Japan, 58, 225–229, doi:  https://doi.org/10.2151/jmsj1965.58.3_225.CrossRefGoogle Scholar
  93. Zhang, C. D., 2013: Madden-Julian Oscillation: Bridging weather and climate. Bull. Amer. Meteor. Soc., 94, 1849–1870, doi:  https://doi.org/10.1175/Bams-D-12-00026.1.CrossRefGoogle Scholar
  94. Zhang, C. D., and H. H. Hendon, 1997: Propagating and standing components of the intraseasonal oscillation in tropical convection. J. Atmos. Sci., 54, 741–752, doi:  https://doi.org/10.1175/1520-0469(1997)054<0741:pascot>2.0.co;2.CrossRefGoogle Scholar
  95. Zhang, C. D., M. Dong, S. Gualdi, et al., 2006: Simulations of the Madden-Julian Oscillation in four pairs of coupled and uncoupled global models. Climate Dyn., 27, 573–592, doi:  https://doi.org/10.1007/s00382-006-0148-2.CrossRefGoogle Scholar
  96. Zhang, G. J., and M. Q. Mu, 2005: Simulation of the Madden-Julian Oscillation in the NCAR CCM3 using a revised Zhang-McFarlane convection parameterization scheme. J. Climate, 18, 4046–4064, doi:  https://doi.org/10.1175/jcli3508.1.CrossRefGoogle Scholar
  97. Zhang, L., B. Z. Wang, and Q. C. Zeng, 2009: Impact of the Mad-den-Julian Oscillation on summer rainfall in Southeast China. J. Climate, 22, 201–216, doi:  https://doi.org/10.1175/2008jcli1959.1.CrossRefGoogle Scholar
  98. Zhao, C. B., T. J. Zhou, L. C. Song, et al., 2014: The boreal summer intraseasonal oscillation simulated by four Chinese AGCMs participating in the CMIP5 pro/ect. Adv. Atmos. Sci., 31, 1167–1180, doi:  https://doi.org/10.1007/s00376-014-3211-7.CrossRefGoogle Scholar
  99. Zheng, Y., D. E. Waliser, W. F. Stern, et al., 2004: The role of coupled sea surface temperatures in the simulation of the tropical intraseasonal oscillation. J. Climate, 17, 4109–4134, doi:  https://doi.org/10.1175/jcli3202.1.CrossRefGoogle Scholar

Copyright information

© The Chinese Meteorological Society and Springer-Verlag Berlin Heidelberg 2019

Authors and Affiliations

  • Pengfei Ren
    • 1
    • 2
    • 3
  • Li Gao
    • 2
    Email author
  • Hong-Li Ren
    • 3
    • 4
  • Xinyao Rong
    • 5
  • Jian Li
    • 6
  1. 1.Chinese Academy of Meteorological SciencesChina Meteorological AdministrationBeijingChina
  2. 2.Numerical Prediction Center, National Meteorological CenterChina Meteorological AdministrationBeijingChina
  3. 3.Laboratory for Climate Studies & China Meteorological Administration-Nanjing University Joint Laboratory for Climate Prediction Studies, National Climate CenterChina Meteorological AdministrationBeijingChina
  4. 4.Department of Atmospheric Sciences, School of Environment StudiesChina University of GeoscienceWuhanChina
  5. 5.State Key Laboratory of Severe Weather, Chinese Academy of Meteorological SciencesChina Meteorological AdministrationBeijingChina
  6. 6.Institute of Climate System (Polar Meteorology), Chinese Academy of Meteorological SciencesChina Meteorological AdministrationBeijingChina

Personalised recommendations