Advertisement

Journal of Meteorological Research

, Volume 33, Issue 2, pp 276–288 | Cite as

An Operational Precipitable Water Vapor Retrieval Algorithm for Fengyun-2F/VLSSR Using a Modified Three-Band Physical Split-Window Method

  • Juyang Hu
  • Shihao TangEmail author
  • Hailei Liu
  • Min Min
Regular Articles
  • 3 Downloads

Abstract

The Visible and Infrared Spin-Scan Radiometer (VISSR) onboard the Fengyun-2 (FY-2) satellite can provide valuable thermal infrared observations to help create a precipitable water vapor (PWV) product with high spatial and temporal resolutions. The current FY-2/VISSR PWV product in operation is produced by using a traditional two-band physical split-window (PSW) method, which produces low quality results under dry atmospheric conditions. Based on the sensitivity characteristics of FY-2F/VISSR water vapor channel and two split-window channels to atmospheric water vapor, this study developed a new, robust operational PWV retrieval algorithm for FY-2F to improve the operational precision of the current PWV product. The algorithm uses a modified three-band PSW method, which adds a scale for the water vapor channel in the improved three-band PSW method. Integrated PWV products from the radiosonde data in 2016 are used here to validate the precision of the PWV retrieved by the modified three-band and traditional two-band PSW methods. The mean bias, root mean square error (RMSE), and correlation coefficient of the PWV retrieved by the modified three-band PSW method are 0.28 mm, 4.53 mm, and 0.969, respectively. The accuracy is much better than the PWV retrieved by the two-band method, whose mean bias, RMSE, and correlation coefficient are 12.67 mm, 29.35 mm, and 0.23. Especially, in mid- or high-latitude regions, the RMSE of the PWV is improved from 10 to 2 mm by changing the inversion in the two-band method to the modified three-band PSW method. Furthermore, the modified three-band PSW results show a better consistency with the radiosonde PWV at any zonal belt and season than the two-band PSW results. This new algorithm could significantly improve the quality of the current FY-2F/VISSR PWV product, especially at sites where the actual PWV are lower than 15 mm.

Key words

physical split-window (PSW) method precipitable water vapor (PWV) FY-2F/VISSR thermal infrared 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

The authors wish to thank the University of Wyoming for providing the radiosonde data. We also thank the anonymous reviewers for thoughtful suggestions and comments.

References

  1. Berk, A., G. P. Anderson, P. K. Acharya, et al., 1999: Modtran4 User’s Manual. Air Force Research Laboratory, Space Vehicles Directorate, AIR FORCE MATERIEL COM-MAND, Hanscom AFB, MA 01731-3010, 99 pp.Google Scholar
  2. Chang, F., 2015: Comparison of T639 numerical forecast and actual sounding data. Mod. Agric. Sci. Technol., 2, 252–254, 257. (in Chinese)Google Scholar
  3. Coret, L., X. Briottet, Y. H. Kerr, et al., 2004: Simulation study of view angle effects on thermal infrared measurements over heterogeneous surfaces. IEEE Trans. Geosci. Remote Sens., 42, 664–672, doi: 10.1109/tgrs.2003.819443.CrossRefGoogle Scholar
  4. Czajkowski, K. P., S. N. Goward, D. Shirey, et al., 2002: Thermal remote sensing of near-surface water vapor. Remote Sens. Environ., 79, 253–265, doi: 10.1016/S0034-4257(01)00277-2.CrossRefGoogle Scholar
  5. Dalu, G., 1986: Satellite remote sensing of atmospheric water vapour. Int. J. Remote Sens., 7, 1089–1097, doi: 10.1080/014311 68608948911.CrossRefGoogle Scholar
  6. Guillory, A.R., G. J. Jedlovec, and H. E. Fuelberg, 1993: A technique for deriving column-integrated water content using VAS split-window data. J. Appl. Meteor, 32, 1226–1241, doi: 10.1175/1520-0450(1993)032<1226:ATFDCI>2.0.CO;2.CrossRefGoogle Scholar
  7. Guo, Z., Y. H. Chen, M. M. Cheng, et al., 2014: Near-surface air temperature retrieval from Chinese Geostationary FengYun Meteorological Satellite (FY-2C) data. Int. J. Remote Sens., 35, 3892–3914, doi: 10.1080/01431161.2014.919674.CrossRefGoogle Scholar
  8. Haines, S.L., G. J. Jedlovec, and R. L. Suggs, 2004: The GOES Product Generation System. NASA/TM-2004-213286, NASA, Huntsville, Alabama, 64 pp.Google Scholar
  9. Hu, J.Y., S. H. Tang, H. L. Liu, et al., 2017: Production and validation of FY-3C VIRR total precipitable water products. J. Remote Sens., 21, 842–852, doi: 10.11834/jrs.20176350. (in Chinese)Google Scholar
  10. Hu, X., N. M. Lu, T. Niu, and P. Zhang, 2008: Operational retrieval of Asian sand and dust storm from FY-2C geostationary meteorological satellite and its application to real time forecast in Asia. Atmos. Chem. Phys., 8, 1649–1659, doi: 10.5194/acp-8-1649-2008.CrossRefGoogle Scholar
  11. Hu, X. Q., N. Xu, F. Z. Weng, et al., 2013: Long-term monitoring and correction of FY-2 infrared channel calibration using AIRS and IASI. IEEE Trans. Geosci. Remote Sens., 51, 5008–5018, doi: 10.1109/TGRS.2013.2275871.CrossRefGoogle Scholar
  12. Jedlovec, G.J., 1987: Determination of atmospheric moisture structure from high resolution MAMS radiance data. Ph.D. dissertation, University of Wisconsin, Madison, 187 ppGoogle Scholar
  13. Jedlovec, G.J., 1990: Precipitable water estimation from high-resolution split window radiance measurement. J. Appl. Meteor., 29, 863–877, doi: 10.1175/1520-0450(1990)029<0863:PWEFHR>2.0.CO;2.CrossRefGoogle Scholar
  14. Julien, Y., J. A. Sobrino, C. Mattar, et al., 2015: Near-real-time estimation of water vapor column from MSG-SEVIRI thermal infrared bands: Implications for land surface temperature retrieval. IEEE Trans. Geosci. Remote Sens., 53, 4231–4237, doi: 10.1109/tgrs.2015.2393378.CrossRefGoogle Scholar
  15. Kleespies, T.J., and L. M. McMillin, 1990: Retrieval of precipitable water from observations in the split window over varying surface temperatures. J. Appl. Meteor, 29, 851–862, doi: 10.1175/1520-0450(1990)029<0851:ROPWFO>2.0.CO;2.CrossRefGoogle Scholar
  16. Knabb, R.D., and H. E. Fuelberg, 1997: A comparison of the first-guess dependence of precipitable water estimates from three techniques using GOES data. J. Appl. Meteor, 36, 417–427, doi: 10.1175/1520-0450(1997)036s0417:ACOT-FG>2.0.CO;2.CrossRefGoogle Scholar
  17. Labbi, A., and A. Mokhnache, 2015: Estimating of total atmospheric water vapor content from MSG1-SEVIRI Observations. Atmos. Meas. Tech. Discuss., 8, 8903–8923, doi: 10.5194/amtd-8-8903-2015.CrossRefGoogle Scholar
  18. Liu, H.L., S. H. Tang, J. Y. Hu, et al., 2017: An improved physical split-window algorithm for precipitable water vapor retrieval exploiting the water vapor channel observations. Remote Sens. Environ., 194, 366–378, doi: 10.1016/j.rse.2017. 03.031.CrossRefGoogle Scholar
  19. Min, M., and Z. B. Zhang, 2014: On the influence of cloud fraction diurnal cycle and sub-grid cloud optical thickness variability on all-sky direct aerosol radiative forcing. J. Quant. Spectrosc. Radiat. Transfer, 142, 25–36, doi: 10.1016/j.jqsrt.2014.03.014.CrossRefGoogle Scholar
  20. Min, M., C. Q. Wu, C. Li, et al., 2017: Developing the science product algorithm testbed for Chinese next-generation geostationary meteorological satellites: FengYun-4 series. J. Meteor. Res., 31, 708–719, doi: 10.1007/sl3351-017-6161-z.CrossRefGoogle Scholar
  21. Min, W.B., B. Li, J. Peng, et al., 2015: Evaluation of total precipitable water derived from FY-2E satellite data over the southeast of Tibetan Plateau and its adjacent areas. Resour. Environ. Yangtze Basin, 24, 625–631. (in Chinese)Google Scholar
  22. Muller, B.M., and H. E. Fuelberg, 1990: A simulation and diagnostic study of water vapor image dry bands. Mon. Wea. Rev., 118, 705–722, doi: 10.1175/1520-0493(1990)118<0705: ASADSO>2.0.CO;2.CrossRefGoogle Scholar
  23. Ottle, C., S. Outalha, C. Francois, et al., 1997: Estimation of total atmospheric water vapor content from split-window radiance measurements. Remote Sens. Environ., 61, 410, doi: 10.1016/S0034-4257(97)00055-2.CrossRefGoogle Scholar
  24. Sassen, K., Z. E. Wang, and D. Liu, 2008: Global distribution of cirrus clouds from CloudSat/CloudhAerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) measurements. J. Geophys. Res. Atmos., 113, D00A12, doi: 10.1029/2008JD009972.CrossRefGoogle Scholar
  25. Saunders, R., 2002: RTTOV-7 Users Guide. Met Office, London, 21 pp. Available at https://nwpsaf.eu/oldsite/deliverables/rtm/rttov7_ug.pdfGoogle Scholar
  26. Seemann, S.W., J. Li, L. E. Gumley, et al., 2003: Operational retrieval of atmospheric temperature, moisture, and ozone from MODIS infrared radiances. Proceedings of SPIE 4895, Applications with Weather Satellites, SPIE, Hangzhou, China, 168–176, doi: 10.1117/12.466686.Google Scholar
  27. Shi, C.X., and Z. H. Xie, 2005: Operational method of total precipitable water retrieved from satellite multi-channels’ infrared data. Journal of Infrared and Millimeter Waves, 24, 304–308, doi: 10.3321/j.issn:1001-9014.2005.04.015. (in Chinese)Google Scholar
  28. Shi, F.L., J. Y. Xin, L. K. Yang, et al., 2018: The first validation of the precipitable water vapor of multisensor satellites over the typical regions in China. Remote Sens. Environ., 206, 107–122, doi: 10.1016/j.rse.2017.12.022.CrossRefGoogle Scholar
  29. Steranka, J., L. J. Allison, and V. V. Salomonson, 1973: Application of Nimbus 4 TEUR 6.7 urn observations to regional and global moisutre and wind field analyses. J. Appl. Meteor., 12, 386–395, doi: 10.1175/1520-0450(1973)012<0386:aontot> 2.0.co;2.CrossRefGoogle Scholar
  30. Suggs, R.J., G. J. Jedlovec, and A. R. Guillory, 1998: Retrieval of geophysical parameters from GOES: Evaluation of a split-window technique. J. Appl. Meteor, 37, 1205–1227, doi: 10.1175/1520-0450(1998)037<1205:ROGPFG>2.0.CO;2.CrossRefGoogle Scholar
  31. Sun, D.L., Y. Y. Yu, L. Fang, et al., 2013: Toward an operational land surface temperature algorithm for GOES. J. Appl. Meteor. Climatol, 52, 1974–1986, doi: 10.1175/JAMC-D-12-0132.1.CrossRefGoogle Scholar
  32. Tang, B.H., and Z.-L. Li, 2008: Estimation of instantaneous net surface longwave radiation from MODIS cloud-free data. Remote Sens. Environ., 112, 3482–3492, doi: 10.1016/j.rse.2008. 04.004.CrossRefGoogle Scholar
  33. Trenberth, K.E., J. T. Fasullo, and J. Kiehl, 2009: Earth’s global energy budget. Bull. Amer. Meteor. Soc, 90, 311–324, doi: 10.1175/2008BAMS2634.1.CrossRefGoogle Scholar
  34. Xu, J.M., W. J. Zhang, J. Yang, et al., 2008: Fengyun-2 Satellite Operational Products and Data Formats Practical Handbook. China Meteorological Press, Beijing, 67–71. (in Chinese)Google Scholar
  35. Zheng, J., C. X. Shi, Q. F. Lu, et al., 2010: Evaluation of total precipitable water over East Asia from FY-3AAVTRR infrared radiances. Atmos. Oceanic Sci. Lett, 3, 93–99, doi: 10.1080/16742834.2010.11446853.CrossRefGoogle Scholar
  36. Zhu, Y.J., W. B. Li, and Y. Chen, 1998: Study of total precipitable water by GMS-5. Quart. J. Appl. Meteor, 9, 8–14. (in Chinese)Google Scholar

Copyright information

© The Chinese Meteorological Society and Springer-Verlag Berlin Heidelberg 2019

Authors and Affiliations

  1. 1.Key Laboratory of Radiometric Calibration and Validation for Environmental Satellites, National Satellite Meteorological CenterChina Meteorological AdministrationBeijingChina
  2. 2.Key Laboratory of Atmospheric SoundingChengdu University of Information TechnologyChengduChina

Personalised recommendations