Advertisement

Journal of Meteorological Research

, Volume 33, Issue 4, pp 666–677 | Cite as

Cloud Radiative Feedbacks during the ENSO Cycle Simulated by CAMS-CSM

  • Lin Chen
  • Lijuan HuaEmail author
  • Xinyao Rong
  • Jian Li
  • Lu Wang
  • Guo Zhang
  • Ming Sun
  • Zi’an Ge
Special Collection on CAMS-CSM
  • 9 Downloads

Abstract

This study evaluated the simulated cloud radiative feedbacks (CRF) during the El Nino-Southern Oscillation (ENSO) cycle in the latest version of the Chinese Academy of Meteorological Sciences climate system model (CAMS-CSM). We conducted two experimental model simulations: the Atmospheric Model Intercomparison Project (AMIP), forced by the observed sea surface temperature (SST); and the preindustrial control (PIcontrol), a coupled run without flux correction. We found that both the experiments generally reproduced the observed features of the shortwave and longwave cloud radiative forcing (SWCRF and LWCRF) feedbacks. The AMIP run exhibited better simulation performance in the magnitude and spatial distribution than the PIcontrol run. Furthermore, the simulation biases in SWCRF and LWCRF feedbacks were linked to the biases in the representation of the corresponding total cloud cover and precipitation feedbacks. It is interesting to further find that the simulation bias originating in the atmospheric component was amplified in the PIcontrol run, indicating that the coupling aggravated the simulation bias. Since the PIcontrol run exhibited an apparent mean SST cold bias over the cold tongue, the precipitation response to the SST anomaly (SSTA) changes during the ENSO cycle occurred towards the relatively warmer western equatorial Pacific. Thus, the corresponding cloud cover and CRF shifted westward and showed a weaker magnitude in the PI-control run versus observational data. In contrast, the AMIP run was forced by the observational SST, hence representing a more realistic CRF. Our results demonstrate the challenges of simulating CRF in coupled models. This study also underscores the necessity of realistically representing the climatological mean state when simulating CRF during the ENSO cycle.

Key words

ENSO CAMS climate system model cloud radiative feedbacks ENSO cycle 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bony, S., and J.-L. Dufresne, 2005: Marine boundary layer clouds at the heart of tropical cloud feedback uncertainties in climate models. Geophys. Res. Lett., 32, L20806, doi:  https://doi.org/10.1029/2005GL023851.CrossRefGoogle Scholar
  2. Cess, R. D., G. L. Potter, J. P. Blanchet, et al., 1990: Intercomparison and interpretation of climate feedback processes in 19 atmospheric general circulation models. J. Geophys. Res. Atmos., 95, 16601–16615, doi:  https://doi.org/10.1029/JD095iD10p16601.CrossRefGoogle Scholar
  3. Chen, L., and Y. Q. Yu, 2014: Preliminary evaluations of ENSO-related cloud and water vapor feedbacks in FGOALS. Flexible Global Ocean—Atmosphere—Land System Model: A Modeling Tool for the Climate Change Research Community, T. J. Zhou, Y. Q. Yu, Y. M. Liu, et al., Eds., Springer, Berlin, Heidelberg, 189–197, doi:  https://doi.org/10.1007/978-3-642-41801-3_23.CrossRefGoogle Scholar
  4. Chen, L., Y. Q. Yu, and D.-Z. Sun, 2013: Cloud and water vapor feedbacks to the El Niño warming: Are they still biased in CMIP5 models? J. Climate, 26, 4947–4961, doi:  https://doi.org/10.1175/JCLI-D-12-00575.1.CrossRefGoogle Scholar
  5. Chen, L., Y. Q. Yu, and W. P. Zheng, 2016: Improved ENSO simulation from climate system model FGOALS-g1.0 to FGOALS-g2. Climate Dyn., 41, 2617–2634, doi:  https://doi.org/10.1007/s00382-016-2988-8.CrossRefGoogle Scholar
  6. Chen, L., T. Li, Y. Q. Yu, et al., 2017: A possible explanation for the divergent projection of ENSO amplitude change under global warming. Climate Dyn., 49, 3799–3811, doi:  https://doi.org/10.1007/s00382-017-3544-x.CrossRefGoogle Scholar
  7. Chen, L., D.-Z. Sun, L. Wang, et al., 2018a: A further study on the simulation of cloud-radiative feedbacks in the ENSO cycle in the tropical pacific with a focus on the asymmetry. Asia-Pacific J. Atmos. Sci., 55, 303–316, doi:  https://doi.org/10.1007/s13143-018-0064-5.CrossRefGoogle Scholar
  8. Chen, L., L. Wang, T. Li, et al., 2018b: Contrasting cloud radiative feedbacks during warm pool and cold tongue El Niños. SOLA, 14, 126–131, doi:  https://doi.org/10.2151/sola.2018-022.CrossRefGoogle Scholar
  9. Chen, M. C., T. Li, X. Shen, et al., 2016: Relative roles of dynamic and thermodynamic processes in causing evolution asymmetry between El Niño and La Nina. J. Climate, 29, 2201–2220, doi:  https://doi.org/10.1175/JCLI-D-15-0547.1.CrossRefGoogle Scholar
  10. Dai, Y. J., X. B. Zeng, R. E. Dickinson, et al., 2003: The common land model. Bull. Amer. Meteor. Soc., 84, 1013–1024, doi:  https://doi.org/10.1175/BAMS-84-8-1013.CrossRefGoogle Scholar
  11. Dee, D. P., S. M. Uppala, A. J. Simmons, et al., 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 337, 553–597, doi:  https://doi.org/10.1002/qj.828.CrossRefGoogle Scholar
  12. Fang, X.-H., F. Zheng, and J. Zhu, 2015: The cloud-radiative effect when simulating strength asymmetry in two types of El Niño events using CMIP5 models. J. Geophys. Res. Oceans, 120, 4357–4369, doi:  https://doi.org/10.1002/2014JC010683.CrossRefGoogle Scholar
  13. Ferrett, S., and M. Collins, 2016: ENSO feedbacks and their relationships with the mean state in a flux adjusted ensemble. Climate Dyn., 52, 7189–7208, doi:  https://doi.org/10.1007/s00382-016-3270-9.CrossRefGoogle Scholar
  14. Ferrett, S., M. Collins, and H.-L. Ren, 2018: Diagnosing relationships between mean state biases and El Niño shortwave feedback in CMIP5 models. J. Climate, 31, 1315–1335, doi:  https://doi.org/10.1175/JCLI-D-17-0331.1.CrossRefGoogle Scholar
  15. Griffies, S. M., M. J. Harrison, P. C. Pacanowski, et al., 2004: A technical guide to MOM-4. GFDL Ocean Group Technical Report No. 5, Princeton, NJ, NOAA/Geophysical Fluid Dynamics Laboratory, 339 pp.Google Scholar
  16. Guilyardi, E., P. Braconnot, F.-F. Jin, et al., 2009: Atmosphere feedbacks during ENSO in a coupled GCM with a modified atmospheric convection scheme. J. Climate, 22, 5698–5718, doi:  https://doi.org/10.1175/2009JCLI2815.1.CrossRefGoogle Scholar
  17. Houghton, J. T., Y. Ding, D. J. Griggs, et al., 2001: Climate Change 2001: The Scientific Basis. Cambridge University Press, Cambridge, 881 pp.Google Scholar
  18. Hua, L. J., and L. Chen, 2019: ENSO asymmetry in the CAMS-CSM. Asia—Pacific J. Atmos. Sci., 55, 507–528, doi:  https://doi.org/10.1007/s13143-018-00102-9.CrossRefGoogle Scholar
  19. Hua, L. J., L. Chen, X. Y. Rong, et al., 2018: Impact of atmospheric model resolution on simulation of ENSO feedback processes: A coupled model study. Climate Dyn., 51, 3077–3092, doi:  https://doi.org/10.1007/s00382-017-4066-2.CrossRefGoogle Scholar
  20. Hua, L. J., L. Chen, X. Y. Rong, et al., 2019: An assessment of ENSO stability in CAMS climate system model simulations. J. Meteor. Res., 33, 80–88, doi:  https://doi.org/10.1007/s13351-018-8092-8.CrossRefGoogle Scholar
  21. Huffman, G. J., R. F. Adler, D. T. Bolvin, et al., 2009: Improving the global precipitation record: GPCP version 2.1. Geophys. Res. Lett., 36, L17808, doi:  https://doi.org/10.1029/2009GL040000.CrossRefGoogle Scholar
  22. Kim, D., J. S. Kug, I. S. Kang, et al., 2008: Tropical Pacific impacts of convective momentum transport in the SNU coupled GCM. Climate Dyn., 31, 213–226, doi:  https://doi.org/10.1007/s00382-007-0348-4.CrossRefGoogle Scholar
  23. Kim, S. T., and F.-F. Jin, 2011a: An ENSO stability analysis. Part I: Results from a hybrid coupled model. Climate Dyn., 36, 1593–1607, doi:  https://doi.org/10.1007/s00382-010-0796-0.CrossRefGoogle Scholar
  24. Kim, S. T., and F.-F. Jin, 2011b: An ENSO stability analysis. Part II: Results from the twentieth and twenty-first century simulations of the CMIP3 model. Climate Dyn., 36, 1609–1627, doi:  https://doi.org/10.1007/s00382-010-0872-5.CrossRefGoogle Scholar
  25. Kim, S. T., W. J. Ca, F.-F. Jin, et al., 2014: ENSO stability in coupled climate models and its association with mean state. Climate Dyn., 42, 3313–3321, doi:  https://doi.org/10.1007/s00382-013-1833-6.CrossRefGoogle Scholar
  26. Li, G., and G. J. Zhang, 2008: Understanding biases in shortwave cloud radiative forcing in the National Center for Atmospheric Research Community Atmosphere Model (CAM3) during El Niño. J. Geophys. Res. Atmos., 113, D02103, doi:  https://doi.org/10.1029/2007JD008963.Google Scholar
  27. Li, L. J., B. Wang, and G. J. Zhang, 2014: The role of nonconvective condensation processes in response of surface shortwave cloud radiative forcing to El Niño warming. J. Climate, 23, 6721–6736, doi:  https://doi.org/10.1175/JCLI-D-13-00632.1.CrossRefGoogle Scholar
  28. Li, L. J., B. Wang, and G. J. Zhang, 2015: The role of moist processes in shortwave radiative feedback during ENSO in the CMIP5 models. J. Climate, 28, 9892–9908, doi:  https://doi.org/10.1175/JCLI-D-15-0276.1.CrossRefGoogle Scholar
  29. Li, T. M., 1997: Phase transition of the El Niño—Southern oscillation: A stationary SST mode. J. Atmos. Sci., 54, 2872–2887, doi:  https://doi.org/10.1175/1520-0469(1997)054<2872:PTOTEN>2.0.CO;2.CrossRefGoogle Scholar
  30. Lin, J.-L., 2007: The double-ITCZ problem in IPCC AR4 coupled GCMs: Ocean-atmosphere feedback analysis. J. Climate, 20, 4497–4525, doi:  https://doi.org/10.1175/JCLI4272.1.CrossRefGoogle Scholar
  31. Lloyd, J., E. Guilyardi, H. Weller, et al., 2009: The role of atmosphere feedbacks during ENSO in the CMIP3 models. Atmos. Sci. Lett., 10, 170–176, doi:  https://doi.org/10.1002/asl.227.CrossRefGoogle Scholar
  32. Lloyd, J., E. Guilyardi, and H. Weller, 2011: The role of atmosphere feedbacks during ENSO in the CMIP3 models. Part II: Using AMIP runs to understand the heat flux feedback mechanisms. Climate Dyn., 37, 1271–1292, doi:  https://doi.org/10.1007/s00382-010-0895-y.CrossRefGoogle Scholar
  33. Lloyd, J., E. Guilyardi, and H. Weller, 2012: The role of atmosphere feedbacks during ENSO in the CMIP3 models. Part III: The shortwave flux feedback. J. Climate, 25, 4275–1293, doi:  https://doi.org/10.1175/JCLI-D-11-00178.1.CrossRefGoogle Scholar
  34. Pu, Y., Y.-L. Tang, and L. J. Li, 2016: Effects of the coupling process on shortwave radiative feedback during ENSO in FGOALS-g. Atmos. Oceanic Sci. Lett., 9, 337–342, doi:  https://doi.org/10.1080/16742834.2016.1192454.CrossRefGoogle Scholar
  35. Randall, D. A., R. A. Wood, S. Bony, et al., 2007: Climate Models and Their Evaluation. Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, S. D. Solomon, D. Qin, M. Manning, et al., Eds., Cambridge University Press, Cambridge, 589–662.Google Scholar
  36. Rayner, N. A., D. E. Parker, E. B. Horton, et al., 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res. Atmos., 108, 4407, doi:  https://doi.org/10.1029/2002JD002670.CrossRefGoogle Scholar
  37. Roeckner, E., G. Bäuml, L. Bonaventura, et al., 2003: The Atmospheric General Circulation Model ECHAM5. Part I: Model Description. Max-Planck-Institut for Meteorologie, Rep. 349. Max Planck Institute for Meteorology, Hamburg, 127 pp.Google Scholar
  38. Rong, X. Y., J. Li, H. M. Chen, et al., 2018: The CAMS climate system model and a basic evaluation of its climatology and climate variability simulation. J. Meteor. Res., 32, 839–861, doi:  https://doi.org/10.1007/s13351-018-8058-x.CrossRefGoogle Scholar
  39. Soden, B. J., and I. M. Held, 2006: An assessment of climate feedbacks in coupled ocean-atmosphere models. J. Climate, 19, 3354–3360, doi:  https://doi.org/10.1175/JCLI3799.1.CrossRefGoogle Scholar
  40. Soden, B. J., and G. A. Vecchi, 2011: The vertical distribution of cloud feedback in coupled ocean-atmosphere models. Geophys. Res. Lett., 38, L12704, doi:  https://doi.org/10.1029/2011GL047632.CrossRefGoogle Scholar
  41. Stephens, G. L., 2005: Cloud feedbacks in the climate system: A critical review. J. Climate, 18, 237–273, doi: 10.1175JJCLI-3243.1.CrossRefGoogle Scholar
  42. Su, J. Z., R. H. Zhang, T. Li, et al., 2010: Causes of the El Niño and La Nina amplitude asymmetry in the equatorial eastern Pacific. J. Climate, 23, 605–617, doi:  https://doi.org/10.1175/2009JCLI2894.1.CrossRefGoogle Scholar
  43. Sun, D.-Z., J. Fasullo, T. Zhang, et al., 2003: On the radiative and dynamical feedbacks over the equatorial Pacific cold tongue. J. Climate, 16, 2425–2432, doi:  https://doi.org/10.1175/2786.1.CrossRefGoogle Scholar
  44. Sun, D.-Z., T. Zhang, C. Covey, et al., 2006: Radiative and dynamical feedbacks over the equatorial cold tongue: Results from nine atmospheric GCMs. J. Climate, 19, 4059–4074, doi:  https://doi.org/10.1175/JCLI3835.1.CrossRefGoogle Scholar
  45. Sun, D.-Z., Y. Q. Yu, and T. Zhang, 2009: Tropical water vapor and cloud feedbacks in climate models: A further assessment using coupled simulations. J. Climate, 22, 1287–1304, doi:  https://doi.org/10.1175/2008JCLI2267.1.CrossRefGoogle Scholar
  46. Tang, Y. L., L. J. Li, W. J. Dong, et al., 2016: Tracing the source of ENSO simulation differences to the atmospheric component of two CGCMs. Atmos. Sci. Lett., 17, 155–161, doi:  https://doi.org/10.1002/asl.637.CrossRefGoogle Scholar
  47. Toniazzo, T., M. Collins, and J. Brown, 2008: The variation of ENSO characteristics associated with atmospheric parameter perturbations in a coupled model. Climate Dyn., 30, 643–656, doi:  https://doi.org/10.1007/s00382-007-0313-2.CrossRefGoogle Scholar
  48. Wang, L., T. J. Zhou, J. Li, et al., 2019: Convectively coupled equatorial waves simulated by CAMS-CSM model. J. Meteor. Res., 33, doi:  https://doi.org/10.1007/s13351-019-9021-1. (in press)
  49. Winton, M., 2000: A reformulated three-layer sea ice model. J. Atmos. Ocean. Technol., 17, 525–531, doi:  https://doi.org/10.1175/1520-0426(2000)017<0525:ARTLSI>2.0.CO;2.CrossRefGoogle Scholar
  50. Wu, C. Q., T. J. Zhou, D.-Z. Sun, et al., 2011: Water vapor and cloud radiative forcings over the Pacific Ocean simulated by the LASG/IAP AGCM: Sensitivity to convection schemes. Atmos. Adv. Sci., 28, 80–98, doi:  https://doi.org/10.1007/s00376-010-9205-1.CrossRefGoogle Scholar
  51. Xie, S.-P., C. Deser, G. A. Vecchi, et al., 2010: Global warming pattern formation: Sea surface temperature and rainfall. J. Climate, 23, 966–986, doi:  https://doi.org/10.1175/2009JCLI3329.1.CrossRefGoogle Scholar
  52. Zhang, T., and D.-Z. Sun, 2006: Response of water vapor and clouds to El Niño warming in three National Center for Atmospheric Research atmospheric models. J. Geophys. Res. Atmos., 111, D17103, doi:  https://doi.org/10.1029/2005JD006700.CrossRefGoogle Scholar
  53. Zhang, T., and D.-Z. Sun, 2008: What causes the excessive response of clear-sky greenhouse effect to El Niño warming in Community Atmosphere Models? J. Geophys. Res. Atmos., 113, D02108, doi:  https://doi.org/10.1029/2007JD009247.Google Scholar
  54. Zhang, Y. C., W. B. Rossow, A. A. Lacis, et al., 2004: Calculation of radiative fluxes from the surface to top of atmosphere based on ISCCP and other global data sets: Refinements of the radiative transfer model and the input data. J. Geophys. Res. Atmos., 109, D19105, doi:  https://doi.org/10.1029/2003JD004457.CrossRefGoogle Scholar
  55. Zheng, F., X.-H. Fang, J.-Y. Yu, et al., 2014: Asymmetry of the Bjerknes positive feedback between the two types of El Niño. Geophys. Res. Lett., 11, 7651–7657, doi:  https://doi.org/10.1022/0014GL062125.CrossRefGoogle Scholar

Copyright information

© The Chinese Meteorological Society and Springer-Verlag Berlin Heidelberg 2019

Authors and Affiliations

  • Lin Chen
    • 1
    • 2
    • 3
  • Lijuan Hua
    • 4
    Email author
  • Xinyao Rong
    • 4
  • Jian Li
    • 4
  • Lu Wang
    • 1
  • Guo Zhang
    • 4
  • Ming Sun
    • 1
  • Zi’an Ge
    • 1
  1. 1.Key Laboratory of Meteorological Disaster, Ministry of Education/Joint International Research Laboratory of Climate and Environmental Change/Collaborative Innovation Center on Forecast and Evaluation of Meteorological DisastersNanjing University of Information Science & Technology (NUIST)NanjingChina
  2. 2.State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric PhysicsChinese Academy of SciencesBeijingChina
  3. 3.State Key Laboratory of Loess and Quaternary Geology, Institute of Earth EnvironmentChinese Academy of SciencesXi’anChina
  4. 4.State Key Laboratory of Severe WeatherChinese Academy of Meteorological Sciences, China Meteorological AdministrationBeijingChina

Personalised recommendations