Advertisement

Journal of Meteorological Research

, Volume 33, Issue 4, pp 747–764 | Cite as

Evaluation of TIGGE Daily Accumulated Precipitation Forecasts over the Qu River Basin, China

  • Li Liu
  • Chao Gao
  • Qian Zhu
  • Yue-Ping XuEmail author
Regular Atricle
  • 11 Downloads

Abstract

Quantitative precipitation forecasts (QPFs) provided by three operational global ensemble prediction systems (EPSs) from the THORPEX (The Observing System Research and Predictability Experiment) Interactive Grand Global Ensemble (TIGGE) archive were evaluated over the Qu River basin, China during the plum rain and typhoon seasons of 2009–13. Two post-processing methods, the ensemble model output statistics based on censored shifted gamma distribution (CSGD-EMOS) and quantile mapping (QM), were used to reduce bias and to improve the QPFs. The results were evaluated by using three incremental precipitation thresholds and multiple verification metrics. It is demonstrated that QPFs from NCEP and ECMWF presented similarly skillful forecasts, although the ECMWF QPFs performed more satisfactorily in the typhoon season and the NCEP QPFs were better in the plum rain season. Most of the verification metrics showed evident seasonal discriminations, with more satisfactory behavior in the plum rain season. Lighter precipitation tended to be overestimated, but heavier precipitation was always underestimated. The post-processed QPFs showed a significant improvement from the raw forecasts and the effects of post-processing varied with the lead time, precipitation threshold, and EPS. Precipitation was better corrected at longer lead times and higher thresholds. CSGD-EMOS was more effective for probabilistic metrics and the root-mean-square error. QM had a greater effect on removing bias according to bias and categorical metrics, but was unable to warrant reliabilities. In general, raw forecasts can provide acceptable QPFs eight days in advance. After post-processing, the useful forecasts can be significantly extended beyond 10 days, showing promising prospects for flood forecasting.

Key words

TIGGE quantitative precipitation forecasts quantile mapping censored shifted gamma distribution 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

The National Climate Center of the China Meteorological Administration is acknowledged for providing meteorological data for the Qu River basin. Precipitation data were obtained from the ECMWF’s TIGGE data portal. Thanks are given to the ECMWF for development of this portal software and for archives of this immense dataset. We also thank Mr. Scheuerer, the developer of CSGD-EMOS, for sharing his code in Github.

References

  1. Alfieri, L., F. Pappenberger, F. Wetterhall, et al., 2014: Evaluation of ensemble streamflow predictions in Europe. J. Hydrol., 517, 913–922, doi:  https://doi.org/10.1016/j.jhydrol.2014.06.035.CrossRefGoogle Scholar
  2. Bougeault, P., Z. Toth, C. Bishop, et al., 2010: The THORPEX interactive grand global ensemble. Bull. Amer. Meteor. Soc., 91, 1059–1072, doi:  https://doi.org/10.1175/2010BAMS2853.1.CrossRefGoogle Scholar
  3. Brier, G. W., 1950: Verification of forecasts expressed in terms of probability. Mon. Wea. Rev., 78, 1–3, doi:  https://doi.org/10.1175/1520-0493(1950)078<0001:VOFEIT>2.0.CO;2.CrossRefGoogle Scholar
  4. Cloke, H. L., and F. Pappenberger, 2009: Ensemble flood forecasting: A review. J. Hydrol., 375, 613–626, doi:  https://doi.org/10.1016/j.jhydrol.2009.06.005.CrossRefGoogle Scholar
  5. Cuo, L., T. C. Pagano, and Q. J. Wang, 2011: A review of quantitative precipitation forecasts and their use in short- to medium-range streamflow forecasting. J. Hydrometeorol., 12, 713–728, doi:  https://doi.org/10.1175/2011JHM1347.1.CrossRefGoogle Scholar
  6. Daoud, A. B., E. Sauquet, G. Bontron, et al., 2016: Daily quantitative precipitation forecasts based on the analogue method: Improvements and application to a French large river basin. Atmos. Res., 199, 147–159, doi:  https://doi.org/10.1016/j.atmosres.2015.09.015.CrossRefGoogle Scholar
  7. Demargne, J., L. M. Wu, S. K. Regonda, et al., 2014: The science of NOAA’s operational hydrologic ensemble forecast service. Bull. Amer. Meteor. Soc., 95, 79–98, doi:  https://doi.org/10.1175/BAMS-D-12-00081.1.CrossRefGoogle Scholar
  8. Demirel, M. C., M. J. Booij, and Y. A. Hoekstra, 2013: Effect of different uncertainty sources on the skill of 10 day ensemble low flow forecasts for two hydrological models. Water Resour. Res., 49, 4035–4053, doi:  https://doi.org/10.1002/wrcr.20294.CrossRefGoogle Scholar
  9. Duan, Q. Y., S. Sorooshian, and V. K. Gupta, 1994: Optimal use of the SCE-UA global optimization method for calibrating watershed models. J. Hydrol., 158, 265–284, doi:  https://doi.org/10.1016/0022-1694(94)90057-4.CrossRefGoogle Scholar
  10. Elkollaly, M., M. Khadr, and B. Zeidan, 2018: Drought analysis in the Eastern Nile basin using the standardized precipitation index. Environ. Sci. Pollut. Res., 55, 30772–30786, doi:  https://doi.org/10.1007/s11356-016-8347-9.CrossRefGoogle Scholar
  11. Feng, L. H., and W. H. Hong, 2007: Characteristics of drought and flood in Zhejiang Province, East China: Past and future. Chinese Geogr. Sci., 17, 257–264, doi:  https://doi.org/10.1007/s11769-007-0257-9.CrossRefGoogle Scholar
  12. Ferro, C. A. T., 2007: Comparing probabilistic forecasting systems with the Brier Score. Wea. Forecasting, 25, 1076–1088, doi:  https://doi.org/10.1175/WAF1034.1.CrossRefGoogle Scholar
  13. Fundel, F., and M. Zappa, 2011: Hydrological ensemble forecasting in mesoscale catchments: Sensitivity to initial conditions and value of reforecasts. Water Resour. Res., 47, W09520, doi:  https://doi.org/10.1029/2010WR009996.CrossRefGoogle Scholar
  14. Ganguly, A. R., and R. L. Bras, 2003: Distributed quantitative precipitation forecasting using information from radar and numerical weather prediction models. J. Hydrometeorol., 4, 1168–1180, doi: 10.117/1525-7541(2003)004<1188:DQPFUI>2.0.CO;2.CrossRefGoogle Scholar
  15. Gevorgyan, A., 2013: Verification of daily precipitation amount forecasts in America by ERA-Interim model. Int. J. Climatol., 33, 2706–2712, doi:  https://doi.org/10.1002/joc.3621.Google Scholar
  16. Gneiting, T., A. E. Raftery, A. H. Westveld III, et al., 2005: Calibrated probabilistic forecasting using ensemble model output statistics and minimum CRPS estimation. Mon. Wea. Rev., 133, 1098–1118, doi:  https://doi.org/10.1175/MWR2904.1.CrossRefGoogle Scholar
  17. Glahn, H. R., and D. A. Lowry, 1972: The use of model output statistics (MOS) in objective weather forecasting. J. Appl. Meteor., 11, 1203–1211.CrossRefGoogle Scholar
  18. Gourley, J. J., and B. E. Vieux, 2005: A method for evaluating the accuracy of quantitative precipitation estimates from a hydro-logic modeling perspective. J. Hydrometeorol., 6, 115–133, doi:  https://doi.org/10.1175/JHM408.1.CrossRefGoogle Scholar
  19. Hagedorn, R., R. Buizza, T. M. Hamill, et al., 2012: Comparing TIGGE multimodel forecasts with reforecast-calibrated ECM-WF ensemble forecasts. Quart. J. Roy. Meteor. Soc., 138, 1814–1827, doi:  https://doi.org/10.1002/qj.1895.CrossRefGoogle Scholar
  20. Hamill, T. M., 2012: Verification of TIGGE multimodel and ECMWF reforecast-calibrated probabilistic precipitation forecasts over the contiguous united states. Mon. Wea. Rev., 140, 2232–2252, doi:  https://doi.org/10.1175/MWR-D-11-00220.1.CrossRefGoogle Scholar
  21. Hamill, T. M., and J. Juras, 2006: Measuring forecast skill: Is it real skill or is it the varying climatology? Quart. J. Roy. Meteor. Soc., 132, 2905–2923, doi:  https://doi.org/10.1256/qj.06.25.CrossRefGoogle Scholar
  22. Hamill, T. M., and M. Scheuerer, 2018: Probabilistic precipitation forecast postprocessing using quantile mapping and rank-weighted best-member dressing. Mon. Wea. Rev., 446, 4079–4098, doi:  https://doi.org/10.1175/MWR-D-18-0147.1.CrossRefGoogle Scholar
  23. Hamill, T. M., R. Hagedorn, and J. S. Whitaker, 2008: Probabilistic forecast calibration using ECMWF and GFS ensemble reforecasts. Part II: Precipitation. Mon. Wea. Rev., 136, 2620–2632, doi:  https://doi.org/10.1175/2007MWR2411.1.CrossRefGoogle Scholar
  24. He, Y., F. Wetterhall, H. J. Bao, et al., 2010: Ensemble forecasting using TIGGE for the July–September 2008 floods in the upper Huai catchment: A case study. Atmos. Sci. Lett., 11, 132–138, doi:  https://doi.org/10.1002/asl.270.CrossRefGoogle Scholar
  25. Hemri, S., M. Scheuerer, F. Pappenberger, et al., 2014: Trends in the predictive performance of raw ensemble weather forecasts. Geophys. Res. Lett., 41, 9197–9205, doi:  https://doi.org/10.1002/2014GL062472.CrossRefGoogle Scholar
  26. Hersbach, H., 2000: Decomposition of the continuous ranked probability score for ensemble prediction systems. Wea. Forecasting, 15, 559–570, doi:  https://doi.org/10.1175/1520-0434(2000)015<0559:DOTCRP>2.0.CO;2.CrossRefGoogle Scholar
  27. Husak, G. J., J. Michaelsen, and C. Funk, 2007: Use of the gamma distribution to represent monthly rainfall in Africa for drought monitoring applications. Int. J. Climatol., 27, 935–944, doi:  https://doi.org/10.1002/joc.1441.CrossRefGoogle Scholar
  28. Jolliffe, I. T., and D. B. Stephenson, 2003: Forecast Verification: A Practitioner’s Guide in Atmospheric Science. John Wiley & Sons, New York, 240 pp.Google Scholar
  29. Kann, A., C. Wittmann, Y. Wang, et al., 2009: Calibrating 2-m temperature of limited-area ensemble forecasts using high-resolution analysis. Mon. Wea. Rev., 137, 3373–3387, doi:  https://doi.org/10.1175/2009MWR2793.1.CrossRefGoogle Scholar
  30. Khan, M. M., A. Y. Shamseldin, B. W. Melville, et al., 2015: Impact of ensemble size on TIGGE precipitation forecasts: An end-user perspective. J. Hydrol. Eng., 20, L10404, doi:  https://doi.org/10.1061/(ASCE)HE.1943-5584.0001025.Google Scholar
  31. Li, W. T., Q. Y. Duan, C. Y. Miao, et al., 2017: A review on statistical postprocessing methods for hydrometeorological ensemble forecasting. Wiley Interdisciplinary Reviews: Water, 4, e1246, doi:  https://doi.org/10.1002/wat2.1246.CrossRefGoogle Scholar
  32. Liu, J. G., and Z. H. Xie, 2014: BMA probabilistic quantitative precipitation forecasting over the Huaihe basin using TIGGE multimodel ensemble forecasts. Mon. Wea. Rev., 142, 1542–1555, doi:  https://doi.org/10.1175/MWR-D-13-00031.1.CrossRefGoogle Scholar
  33. Liu, L., C. Gao, W. D. Xuan, et al., 2017: Evaluation of medium-range ensemble flood forecasting based on calibration strategies and ensemble methods in Lanjiang Basin, South-east China. J. Hydrol., 554, 233–250, doi:  https://doi.org/10.1016/j.jhydrol.2017.08.032.CrossRefGoogle Scholar
  34. Louvet, S., B. Sultan, S. Janicot, et al., 2016: Evaluation of TIGGE precipitation forecasts over West Africa at intraseasonal timescale. Climate Dyn., 47, 31–47, doi:  https://doi.org/10.1007/s00382-015-2820-x.CrossRefGoogle Scholar
  35. Madadgar, S., H. Moradkhani, and D. Garen, 2014: Towards improved post-processing of hydrologic forecast ensembles. Hydrol. Process., 28, 104–122, doi:  https://doi.org/10.1002/hyp.9562.CrossRefGoogle Scholar
  36. Matheson, J. E., and R. L. Winkler, 1976: Scoring rules for continuous probability distributions. Manage. Sci., 22, 1087–1095, doi:  https://doi.org/10.1287/mnsc.22.10.1087.CrossRefGoogle Scholar
  37. Matsueda, M., and T. Nakazawa, 2015: Early warning products for severe weather events derived from operational medium-range ensemble forecasts. Meteor. Appl., 22, 213–222, doi:  https://doi.org/10.1002/met.1444.CrossRefGoogle Scholar
  38. Miao, C. Y., H. Ashouri, K.-L. Hsu, et al., 2015: Evaluation of the PERSIANN-CDR daily rainfall estimates in capturing the behavior of extreme precipitation events over China. J. Hydrometeorol., 14, 1387–1396, doi:  https://doi.org/10.1175/JHM-D-14-0174.1.CrossRefGoogle Scholar
  39. MMC, 2005: Natural hazard mitigation saves: An independent study to assess the future savings from mitigation activities. National Institute of Building Sciences. [Available Online at http://www.floods.org/PDF/MMC_Volume1_FindingsConclusionsRecommendations.pdf].
  40. Morss, R. E., 2010: Interactions among flood predictions, decisions, and outcomes: Synthesis of three cases. Nat. Hazards Rev., 11, 83–96, doi:  https://doi.org/10.1061/(ASCE)NH.1527-6996.0000011.CrossRefGoogle Scholar
  41. Nurmi, P., 2003: Recommendations on the verification of local weather forecasts. [Available Online at http://www.cawcr.gov.au/projects/verification/Rec_FIN_Oct.pdf].
  42. Oudin, L., C. Perrin, and T. Mathevet, 2006: Impact of biased and randomly corrupted inputs on the efficiency and the parameters of watershed models. J. Hydrol., 320, 62–83, doi:  https://doi.org/10.1016/j.jhydrol.2005.07.016.CrossRefGoogle Scholar
  43. Rana, S., J. McGregor, and J. Renwick, 2015: Precipitation seasonality over the Indian subcontinent: An evaluation of gauge, reanalyses, and satellite retrievals. J. Hydrometeorol., 16, 631–651, doi:  https://doi.org/10.1175/JHM-D-14-0106.1.CrossRefGoogle Scholar
  44. Renner, M., M. G. F. Werner, S. Rademacher, et al., 2009: Verification of ensemble flow forecasts for the River Rhine. J. Hydrol., 374, 463–475, doi:  https://doi.org/10.1016/j.jhydrol.2009.07.059.CrossRefGoogle Scholar
  45. Richardson, D., R. Buizza, and R. Hagedorn, 2005: First Workshop on the THORPEX Interactive Grand Global Ensemble (TIGGE). WMO/TD-No.1273, WWRP-THORPEX No.5, World Meteorological Organization, Reading, United Kingdom, 8–10.Google Scholar
  46. Robertson, D. E., D. L. Shrestha, and Q. J. Wang, 2013: Post-processing rainfall forecasts from numerical weather prediction models for short-term streamflow forecasting. Hydrol. Earth Syst. Sci., 17, 3587–3603, doi:  https://doi.org/10.5194/hess-17-3587-2013.CrossRefGoogle Scholar
  47. Sarachi, S., K. L. Hsu, and S. Sorooshian, 2015: A statistical model for the uncertainty analysis of satellite precipitation products. J. Hydrometeorol., 14, 2101–2117, doi:  https://doi.org/10.1175/JHM-D-15-0028.1.CrossRefGoogle Scholar
  48. Scheuerer, M., 2014: Probabilistic quantitative precipitation forecasting using ensemble model output statistics. Quart. J. Roy. Meteor. Soc., 140, 1086–1096, doi:  https://doi.org/10.1002/qj.2183.CrossRefGoogle Scholar
  49. Scheuerer, M., and T. M. Hamill, 2015: Statistical postprocessing of ensemble precipitation forecasts by fitting censored, shifted gamma distributions. Mon. Wea. Rev., 143, 4578–4596, doi:  https://doi.org/10.1175/MWR-D-15-0061.1.CrossRefGoogle Scholar
  50. Schuhen, N., T. L. Thorarinsdottir, and T. Gneiting, 2012: Ensemble model output statistics for wind vectors. Mon. Wea. Rev., 140, 3204–3219, doi:  https://doi.org/10.1175/MWR-D-12-00028.1.CrossRefGoogle Scholar
  51. Schumacher, R. S., and C. A. Davis, 2010: Ensemble-based forecast uncertainty analysis of diverse heavy rainfall events. Wea. Forecasting, 25, 1103–1122, doi:  https://doi.org/10.1175/MWR-D-12-00028.1.2222378.1.CrossRefGoogle Scholar
  52. Shi, H. Y., T. J. Li, and R. H. Liu, 2015: A service-oriented architecture for ensemble flood forecast from numerical weather prediction. J. Hydrol., 527, 933–942, doi:  https://doi.org/10.1016/j.jhydrol.2015.05.056.CrossRefGoogle Scholar
  53. Shrestha, D. L., D. E. Robertson, Q. J. Wang, et al., 2013: Evaluation of numerical weather prediction model precipitation forecasts for short-term streamflow forecasting purpose. Hydrol. Earth Syst. Sci., 17, 1913–1931, doi:  https://doi.org/10.5194/hess-17-1913-2013.CrossRefGoogle Scholar
  54. Shukla, S., J. Roberts, A. Hoell, et al., 2016: Assessing North American multimodel ensemble (NMME) seasonal forecast skill to assist in the early warning of anomalous hydrometeorological events over East Africa. Climate Dyn., 1–17, doi:  https://doi.org/10.1007/s00382-016-3296-z..
  55. Su, X., H. L. Yuan, Y. J. Zhu, et al., 2014: Evaluation of TIGGE ensemble predictions of Northern Hemisphere summer precipitation during 2008–2012. J. Geophys. Res. Atmos., 119, 7292–7310, doi:  https://doi.org/10.1002/2014JD021733.CrossRefGoogle Scholar
  56. Swinbank, R., M. Kyouda, P. Buchanan, et al., 2016: The TIGGE project and its achievements. Bull. Amer. Meteor. Soc., 97, 49–67, doi:  https://doi.org/10.1175/BAMS-D-13-00191.1.CrossRefGoogle Scholar
  57. Themeßl, M. J., A. Gobiet, and A. Leuprecht, 2011: Empirical-statistical downscaling and error correction of daily precipitation from regional climate models. Int. J. Climatol., 31, 1530–1544, doi:  https://doi.org/10.1002/joc.2168.CrossRefGoogle Scholar
  58. Themeßl, M. J., A. Gobiet, and G. Heinrich, 2012: Empirical-statistical downscaling and error correction of regional climate models and its impact on the climate change signal. Climatic Change, 112, 449–468, doi:  https://doi.org/10.1007/s10584-011-0224-4.CrossRefGoogle Scholar
  59. Tong, K., F. G. Su, D. Q. Yang, et al., 2013: Tibetan Plateau precipitation as depicted by gauge observations, reanalyses and satellite retrievals. Int. J. Climatol., 34, 265–285, doi:  https://doi.org/10.1002/joc.3682.CrossRefGoogle Scholar
  60. UNDP, 2012: Putting resilience at the heart of development: Investing in prevention and resilient recovery. [Available online at http://www.undp.org/content/undp/en/home/libraryppage/crisis-prevention-and-recovery/putting-resilicence-at-the-heart-of-development.html].
  61. van Andel, S. J., A. Weerts, J. Schaake, et al., 2013: Post-processing hydrological ensemble predictions intercomparison experiment. Hydrol. Process., 27, 158–161, doi:  https://doi.org/10.1002/hyp.9595.CrossRefGoogle Scholar
  62. Verkade, J. S., J. D. Brown, P. Reggiani, et al., 2013: Post-processing ECMWF precipitation and temperature ensemble reforecasts for operational hydrologic forecasting at various spatial scales. J. Hydrol., 501, 73–91, doi:  https://doi.org/10.1016/j.jhydrol.2013.07.039.CrossRefGoogle Scholar
  63. Welles, E., S. Sorooshian, G. Carter, et al., 2007: Hydrologic verification: A call for action and collaboration. Bull. Amer. Meteor. Soc., 88, 503–512, doi:  https://doi.org/10.1175/BAMS-88-4-503.CrossRefGoogle Scholar
  64. Wiegand, L., A. Twitchett, C. Schwierz, et al., 2011: Heavy precipitation at the alpine south side and Saharan dust over central Europe: A predictability study using TIGGE. Wea. Forecasting, 21, 957–974, doi:  https://doi.org/10.1175/WAF-D-10-05060.1.CrossRefGoogle Scholar
  65. Wilks, D. S., 2006: Statistical Methods in the Atmospheric Sciences. 2nd Ed., Academic Press, San Diego, 627 pp.Google Scholar
  66. Wilks, D. S., and T. M. Hamill, 2007: Comparison of ensemble-MOS methods using GFS reforecasts. Mon. Wea. Rev., 135, 2379–2390, doi:  https://doi.org/10.1175/MWR3402.1.CrossRefGoogle Scholar
  67. Wilson, L. J., 2000: Comments on “Probabilistic predictions of precipitation using the ECMWF ensemble prediction system”. Wea. Forecasting, 15, 361–364, doi:  https://doi.org/10.1175/1520-0434(2000)015<0361:COPPOP>2.0.CO;2.CrossRefGoogle Scholar
  68. WMO, 2012: Chapter 14: Observation of present and past weather; state of the ground. Guide to Meteorological Instruments and Methods of Observation, WMO, Geneva, Switzerland, 14–19.Google Scholar
  69. Wright, D. B., D. B. Kirschbaum, and S. Yatheendradas, 2017: Satellite precipitation characterization, error modeling, and error correction using censored shifted gamma distributions. J. Hydrometeorol., 18, 2801–2815, doi:  https://doi.org/10.1175/JHM-D-17-0060.1.CrossRefGoogle Scholar
  70. Yang, T. H., S. C. Yang, J. Y. Ho, et al., 2015: Flash flood warnings using the ensemble precipitation forecasting technique: A case study on forecasting floods in Taiwan caused by typhoons. J. Hydrol., 520, 367–378, doi:  https://doi.org/10.1016/j.jhydrol.2014.11.028.CrossRefGoogle Scholar
  71. Ye, J., Y. He, F. Pappenberger, et al., 2014: Evaluation of ECM-WF medium-range ensemble forecasts of precipitation for river basins. Quart. J. Roy. Meteor. Soc., 140, 1615–1628, doi:  https://doi.org/10.1002/qj.2243.CrossRefGoogle Scholar
  72. Yucel, I., A. Onen, K. K. Yilmaz, et al., 2015: Calibration and evaluation of a flood forecasting system: Utility of numerical weather prediction model, data assimilation and satellite-based rainfall. J. Hydrol., 233, 49–66, doi:  https://doi.org/10.1016/j.jhydrol.2015.01.042.CrossRefGoogle Scholar
  73. Zhang, X. J., M. J. Booij, and Y. P. Xu, 2015: Improved simulation of peak flows under climate change: Postprocessing or composite objective calibration? J. Hydrometeorol., 16, 2187–2208, doi:  https://doi.org/10.1175/JHM-D-14-0218.1.CrossRefGoogle Scholar
  74. Zhao, T. T. G., J. C. Bennett, Q. J. Wang, et al., 2017: How suitable is quantile mapping for postprocessing GCM precipitation forecasts? J. Climate, 30, 3185–3196, doi:  https://doi.org/10.1175/JCLI-D-16-0652.1.CrossRefGoogle Scholar

Copyright information

© The Chinese Meteorological Society and Springer-Verlag Berlin Heidelberg 2019

Authors and Affiliations

  1. 1.Institute of Hydrology and Water Resources, College of Civil Engineering and ArchitectureZhejiang UniversityHangzhouChina
  2. 2.School of Civil EngineeringSoutheast UniversityNanjingChina

Personalised recommendations