Journal of Meteorological Research

, Volume 33, Issue 2, pp 336–348 | Cite as

The Distribution and Uncertainty Quantification of Wind Profile in the Stochastic General Ekman Momentum Approximation Model

  • Bing Yan
  • Sixun HuangEmail author
  • Jing Feng
  • Yu Wang
Regular Articles


The general Ekman momentum approximation boundary-layer model (GEM) can be effectively used to describe the physical processes of the boundary layer. However, eddy viscosity, which is an approximated value, can lead to uncertainty in the solutions. In this paper, stochastic eddy viscosity is taken into consideration in the GEM, and generalized polynomial chaos is used to quantify the uncertainty. The goal of uncertainty quantification is to investigate the effects of uncertainty in the eddy viscosity on the model and to subsequently provide reliable distribution of simulation results. The performances of the stochastic eddy viscosity and generalized polynomial chaos method are validated based on three different types of eddy viscosities, and the results are compared based on the Monte Carlo method. The results indicate that the generalized polynomial chaos method can be accurately and efficiently used in uncertainty quantification for the GEM with stochastic eddy viscosity.

Key words

generalized polynomial chaos Monte Carlo method general Ekman momentum approximation model Ekman spiral 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Baklanov, A. A., B. Grisogono, R. Bornstein, et al., 2011: The nature, theory, and modeling of atmospheric planetary boundary layers. Bull. Amer. Meteor. Soc., 92, 123–128, doi: 10.1175/2010BAMS2797.1.CrossRefGoogle Scholar
  2. Barzel, B., and O. Biham, 2011: Binomial moment equations for stochastic reaction systems. Phys. Rev. Lett., 106, 150602, doi: 10.1103/PhysRevLett.106.150602.CrossRefGoogle Scholar
  3. Beare, R. J., and M. J. P. Cullen, 2010: A semi-geostrophic model incorporating well-mixed boundary layers. Quart. J. Roy. Meteor. Soc., 136, 906–917, doi: 10.1002/qj.612.CrossRefGoogle Scholar
  4. Berger, B. W., and B. Grisogono, 1998: The baroclinic, variable eddy viscosity Ekman layer. Bound.-Layer Meteor., 87, 363–380, doi: 10.1023/A:1001076030166.CrossRefGoogle Scholar
  5. Berner, J., U. Achatz, L. Batté, et al., 2017: Stochastic parameterization: Toward a new view of weather and climate models. Bull. Amer. Meteor. Soc., 98, 565–588, doi: 10.1175/bams-d-15-00268.1.CrossRefGoogle Scholar
  6. Blumen, W., and R. S. Wu, 1983: Baroclinic instability and frontogenesis with Ekman boundary layer dynamics incorporating the geostrophic momentum approximation. J. Atmos. Sci., 40, 2630–2638, doi: 10.1175/1520-0469(1983)040<2630:BIAFWE>2.0.CO;2.CrossRefGoogle Scholar
  7. Cullen, M. J. P., 1989: On the incorporation of atmospheric boundary layer effects into a balanced model. Quart. J. Roy. Meteor. Soc., 115, 1109–1131, doi: 10.1002/qj.49711548906.CrossRefGoogle Scholar
  8. D’Onofrio, L., A. Fiscella, and G. M. Bisci, 2017: Perturbation methods for nonlocal Kirchhoff-type problems. Fract. Calc. Appl. Anal., 20, 829–853, doi: 10.1515/fca-2017-0044.Google Scholar
  9. Ekman, V. W., 1905: On the influence of the earth’s rotation on ocean-currents. Arch. Math. Astron. Phys., 2, 1–53.Google Scholar
  10. Fox, B. L., 1999: Strategies for Quasi-Monte Carlo. Springer, Boston, 54–93, doi: 10.1007/978-1-4615-5221-5.CrossRefGoogle Scholar
  11. Ghanem, R. G., and P. D. Spanos, 1991: Stochastic Finite Elements: A Spectral Approach. Springer, New York, 46–105, doi: 10.1007/978-1-4612-3094-6.CrossRefGoogle Scholar
  12. Grisogono, B., T. Jurlina, Ž. Večenaj, et al., 2015: Weakly nonlinear Prandtl model for simple slope flows. Quart. J. Roy. Meteor. Soc., 141, 883–892, doi: 10.1002/qj.2406.CrossRefGoogle Scholar
  13. Helton, J. C., and F. J. Davis, 2003: Latin hypercube sampling and the propagation of uncertainty in analyses of complex systems. Reliability Engineering & System Safety, 81, 23–69, doi: 10.1016/S0951-8320(03)00058-9.CrossRefGoogle Scholar
  14. Le Maître, O. P., and O. M. Knio, 2010: Spectral Methods for Uncertainty Quantification: With Applications to Computational Fluid Dynamics. Springer, Dordrecht, 18–29, doi: 10.1007/978-90-481-3520-2.CrossRefGoogle Scholar
  15. Li, J., and D. B. Xiu, 2009: A generalized polynomial chaos based ensemble Kalman filter with high accuracy. J. Comput. Phys., 228, 5454–5469, doi: 10.1016/ Scholar
  16. Li, W. X., Z. M. Lu, and D. X. Zhang, 2009: Stochastic analysis of unsaturated flow with probabilistic collocation method. Water Resour. Res., 45, W08425, doi: 10.1029/2008WR007530.Google Scholar
  17. Li, W. X., G. Lin, and D. X. Zhang, 2014: An adaptive ANOVAbased PCKF for high-dimensional nonlinear inverse modeling. J. Comput. Phys., 258, 752–772, doi: 10.1016/ Scholar
  18. Lin, G., A. M. Tartakovsky, and D. M. Tartakovsky, 2010: Uncertainty quantification via random domain decomposition and probabilistic collocation on sparse grids. J. Comput. Phys., 229, 6995–7012, doi: 10.1016/ Scholar
  19. Loh, W. L., 1996: On Latin hypercube sampling. Ann. Stat., 24, 2058–2080, doi: 10.1214/aos/1069362310.CrossRefGoogle Scholar
  20. Mahrt, L., 1998: Stratified atmospheric boundary layers and breakdown of models. Theoret. Comput. Fluid Dynamics, 11, 263–279, doi: 10.1007/s001620050093.CrossRefGoogle Scholar
  21. Marlatt, S., S. Waggy, and S. Biringen, 2012: Direct numerical simulation of the turbulent Ekman layer: Evaluation of closure models. J. Atmos. Sci., 69, 1106–1117, doi: 10.1175/JASD-11-0107.1.CrossRefGoogle Scholar
  22. Marzouk, Y. M., and H. N. Najm, 2009: Dimensionality reduction and polynomial chaos acceleration of Bayesian inference in inverse problems. J. Comput. Phys., 228, 1862–1902, doi: 10.1016/ Scholar
  23. Najm, H. N., 2009: Uncertainty quantification and polynomial chaos techniques in computational fluid dynamics. Annu. Rev. Fluid Mech., 41, 35–52, doi: 10.1146/annurev.fluid.010908.165248.CrossRefGoogle Scholar
  24. Schoutens, W., 2000: The Askey scheme of orthogonal polynomials. Stochastic Processes and Orthogonal Polynomials, W. Schoutens, Ed., Springer, New York, 1–13, doi: 10.1007/978-1-4612-1170-9.CrossRefGoogle Scholar
  25. Singer, H., 2006: Moment equations and Hermite expansion for nonlinear stochastic differential equations with application to stock price models. Comput. Stat., 21, 385–397, doi: 10.1007/s00180-006-0001-4.CrossRefGoogle Scholar
  26. Sun, N. Z., and A. Sun, 2015: Model uncertainty quantification. Model Calibration and Parameter Estimation: For Environmental and Water Resource Systems, N. Z. Sun, and A. Sun, Ed., Springer, New York, 407–458, doi: 10.1007/978-1-4939-2323-6_10.CrossRefGoogle Scholar
  27. Tan, Z. M., 2001: An approximate analytical solution for the baroclinic and variable eddy diffusivity semi-geostrophic Ekman boundary layer. Bound.-Layer Meteor., 98, 361–385, doi: 10.1023/A:1018708726112.CrossRefGoogle Scholar
  28. Tan, Z. M., and R. S. Wu, 1994: The Ekman momentum approximation and its application. Bound.-Layer Meteor., 68, 193–199, doi: 10.1007/BF00712671.CrossRefGoogle Scholar
  29. Tan, Z. M., and Y. Wang, 2002: Wind structure in an intermediate boundary layer model based on Ekman momentum approximation. Adv. Atmos. Sci., 19, 266–278, doi: 10.1007/s00376-002-0021-0.CrossRefGoogle Scholar
  30. Tan, Z. M., J. Fang, and R. S. Wu, 2006: Nonlinear Ekman layer theories and their applications. J. Meteor. Res., 20, 209–222.Google Scholar
  31. Twigg, R. D., and P. R. Bannon, 1998: Frontal equilibration by frictional processes. J. Atmos. Sci., 55, 1084–1087, doi: 10.1175/1520-0469(1998)055<1084:FEBFP>2.0.CO;2.CrossRefGoogle Scholar
  32. Wang, Y. P., Y. Cheng, Z. Y. Zhang, et al., 2018: Calibration of reduced-order model for a coupled Burgers equations based on PC-EnKF. Math. Model. Nat, Phenom., 13, 21, doi: 10.1051/mmnp/2018023.CrossRefGoogle Scholar
  33. Wiener, N., 1938: The homogeneous chaos. Amer. J. Math., 60, 897–936, doi: 10.2307/2371268.CrossRefGoogle Scholar
  34. Wu, R. S., and W. Blumen, 1982: An analysis of Ekman boundary layer dynamics incorporating the geostrophic momentum approximation. J. Atmos. Sci., 39, 1774–1782, doi: 10.1175/1520-0469(1982)039<1774:AAOEBL>2.0.CO;2.CrossRefGoogle Scholar
  35. Xiu, D. B., 2009: Fast numerical methods for stochastic computations: A review. Comput. Commun. Phys., 5, 242–272.Google Scholar
  36. Xiu, D. B., 2010: Numerical Methods for Stochastic Computations: A Spectral Method Approach. Princeton University Press, Princeton, 26–88.CrossRefGoogle Scholar
  37. Yan, B., S. X. Huang, and J. Feng, 2017: Retrieval of eddy thermal conductivity in the weakly nonlinear Prandtl model for katabatic flows. J. Meteor. Res., 31, 965–975, doi: 10.1007/s13351-017-7025-2.CrossRefGoogle Scholar
  38. Yan, B., S. X. Huang, and J. Feng, 2018: Retrieval and uncertainty analysis of stochastic parameter in atmospheric boundary layer model. Acta Phys. Sinica, 67, 199201, doi: 10.7498/aps.67.20181014. (in Chinese)Google Scholar
  39. Zeng, L. Z., and D. X. Zhang, 2010: A stochastic collocation based Kalman filter for data assimilation. Comput. Geosci., 14, 721–744, doi: 10.1007/s10596-010-9183-5.CrossRefGoogle Scholar

Copyright information

© The Chinese Meteorological Society and Springer-Verlag Berlin Heidelberg 2019

Authors and Affiliations

  1. 1.College of Meteorology and OceanographyNational University of Defense TechnologyNanjingChina
  2. 2.Center for Computational Science and FinanceShanghai University of Finance and EconomicsShanghaiChina

Personalised recommendations