Advertisement

Journal of Meteorological Research

, Volume 33, Issue 3, pp 519–527 | Cite as

Assessing the Performance of Separate Bias Kalman Filter in Correcting the Model Bias for Estimation of Soil Moisture Profiles

  • Bangjun Cao
  • Fuping Mao
  • Shuwen ZhangEmail author
  • Shaoying Li
  • Tian Wang
Special Collection on Development and Applications of Regional and Global Land Data Assimilation Systems
  • 13 Downloads

Abstract

The performance of separate bias Kalman filter (SepKF) in correcting the model bias for the improvement of soil moisture profiles is evaluated by assimilating the near-surface soil moisture observations into a land surface model (LSM). First, an observing system simulation experiment (OSSE) is carried out, where the true soil moisture is known, two types of model bias (i.e., constant and sinusoidal) are specified, and the bias error covariance matrix is assumed to be proportional to the model forecast error covariance matrix with a ratio λ. Second, a real assimilation experiment is carried out with measurements at a site over Northwest China. In the OSSE, the soil moisture estimation with the SepKF is improved compared with ensemble Kalman filter (EnKF) without the bias filter, because SepKF can properly correct the model bias, especially in the situation with a large model bias. However, the performance of SepKF becomes slightly worse if the constant model bias increases or temporal variability of the sinusoidal model bias becomes large. It is suggested that the ratio λ should be increased (decreased) in order to improve the soil moisture estimation if temporal variability of the sinusoidal model bias becomes high (low). Finally, the assimilation experiment with real observations also shows that SepKF can further improve the estimation of soil moisture profiles compared with EnKF without the bias correction.

Key words

soil moisture bias correction ensemble Kalman filter (EnKF) Noah-MP 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

Datasets used in this paper were kindly provided by the Semi-Arid Climate and Environment Observatory of Lanzhou University. See their website u]http://climate.lzu.edu.cn/data/index.asp for details.

References

  1. Anderson, J. L., and S. L. Anderson, 1999: A Monte Carlo implementation of the nonlinear filtering problem to produce ensemble assimilations and forecasts. Mon. Wea. Rev., 127, 2741–2758, doi:  https://doi.org/10.1175/1520-0493(1999)127<2741:AMCI-OT>2.0.CO;2.CrossRefGoogle Scholar
  2. Ball, J. T., I. E. Woodrow, and J. A. Berry, 1987: A model predicting stomatal conductance and its contribution to the control of photosynthesis under different environmental conditions. Progress in Photosynthesis Research, J. Biggins, Ed., Springer, Dordrecht, 221–224, doi:  https://doi.org/10.1007/978-94-017-0519-6_48.CrossRefGoogle Scholar
  3. Brunsell, N. A., S. J. Schymanski, and A. Kleidon, 2011: Quantifying the thermodynamic entropy budget of the land surface: Is this useful? Earth Syst. Dyn., 2, 87–103, doi:  https://doi.org/10.5194/esd-2-87-2011.CrossRefGoogle Scholar
  4. Cai, X. T., Z. L. Yang, C. H. David, et al., 2014: Hydrological evaluation of the Noah-MP land surface model for the Mississippi River Basin. J. Geophys. Res. Atmos., 119, 23–38, doi:  https://doi.org/10.1002/2013JD020792.CrossRefGoogle Scholar
  5. Crow, W. T., R. D. Koster, R. H. Reichle, et al., 2005: Relevance of time-varying and time-invariant retrieval error sources on the utility of spaceborne soil moisture products. Geophys. Res. Lett., 32, L24405, doi:  https://doi.org/10.1029/2005GL024889.CrossRefGoogle Scholar
  6. De Lannoy, G. J. M., R. H. Reichle, P. R. Houser, et al., 2007: Correcting for forecast bias in soil moisture assimilation with the ensemble Kalman filter. Water Resour. Res., 43, W09410, doi:  https://doi.org/10.1029/2006WR005449.Google Scholar
  7. Dee, D. P., and A. M. Da Silva, 1998: Data assimilation in the presence of forecast bias. Quart. J. Roy. Meteor. Soc., 124, 269–295, doi:  https://doi.org/10.1002/qj.49712454512.CrossRefGoogle Scholar
  8. Drécourt, J. P., and H. Madsen, 2002: Uncertainty estimation in groundwater modelling using Kalman filtering. Proceedings of the 4th International Conference on Calibration and Reliability in Groundwater Modelling, Acta Universitatis Carolinae, Prague, Czech Republic, 306–309.Google Scholar
  9. Drécourt, J. P., H. Madsen, and D. Rosbjerg, 2006: Bias aware Kalman filters: Comparison and improvements. Adv. Water Resour., 29, 707–718, doi:  https://doi.org/10.1016/j.advwatres.2005.07.006.CrossRefGoogle Scholar
  10. Evensen, G., 1994: Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics. J. Geophys. Res. Oceans, 99, 10,143–10,162, doi:  https://doi.org/10.1029/94JC00572.CrossRefGoogle Scholar
  11. Friedland, B., 1969: Treatment of bias in recursive filtering. IEEE Trans. Autom. Control, 14, 359–367, doi:  https://doi.org/10.1109/TAC.1969.1099223.CrossRefGoogle Scholar
  12. Hamill, T. M., and J. S. Whitaker, 2005: Accounting for the error due to unresolved scales in ensemble data assimilation: A comparison of different approaches. Mon. Wea. Rev., 133, 3132–3147, doi:  https://doi.org/10.1175/MWR3020.1.CrossRefGoogle Scholar
  13. Hamill, T. M., J. S. Whitaker, and C. Snyder, 2001: Distance-dependent filtering of background error covariance estimates in an ensemble Kalman filter. Mon. Wea. Rev., 129, 2776–2790, doi:  https://doi.org/10.1175/1520-0493(2001)129<2776:DDFOBE>>2.0.CO;2.CrossRefGoogle Scholar
  14. Huang, J. P., W. Zhang, J. Q. Zuo, et al., 2008: An overview of the semi-arid climate and environment research observatory over the Loess Plateau. Adv. Atmos. Sci., 25, 906, doi:  https://doi.org/10.1007/s00376-008-0906-7.CrossRefGoogle Scholar
  15. Jazwinski, A. H., 1970: Stochastic Processes and Filtering Theory. Academic Press, New York, 1–103.Google Scholar
  16. Kollat, J. B., P. M. Reed, and D. M. Rizzo, 2008: Addressing model bias and uncertainty in three dimensional groundwater transport forecasts for a physical aquifer experiment. Geophys. Res. Lett., 35, L17402, doi:  https://doi.org/10.1029/2008GL035021.CrossRefGoogle Scholar
  17. Kollat, J. B., P. M. Reed, and R. M. Maxwell, 2011: Many-objective groundwater monitoring network design using bias-aware ensemble Kalman filtering, evolutionary optimization, and visual analytics. Water Resour. Res., 47, W02529, doi:  https://doi.org/10.1029/2010WR009194.CrossRefGoogle Scholar
  18. Meyers, T. P., and S. E. Hollinger, 2004: An assessment of storage terms in the surface energy balance of maize and soybean. Agric. For. Meteor., 125, 105–115, doi:  https://doi.org/10.1016/j.agr-formet.2004.03.001.CrossRefGoogle Scholar
  19. Montzka, C., H. Moradkhani, L. Weihermüller, et al., 2011: Hydraulic parameter estimation by remotely-sensed top soil moisture observations with the particle filter. J. Hydrol., 399, 410–121, doi:  https://doi.org/10.1016/j.jhydrol.2011.01.020.CrossRefGoogle Scholar
  20. Montzka, C., V. R. N. Pauwels, H. J. H. Franssen, et al., 2012: Multivariate and multiscale data assimilation in terrestrial systems: A review. Sensors, 12, 16291–16333, doi:  https://doi.org/10.3390/s121216291.CrossRefGoogle Scholar
  21. Niu, G. Y., Z. L. Yang, K. E. Mitchell, et al., 2011: The community Noah land surface model with multiparameterization options (Noah-MP): 1. Model description and evaluation with local-scale measurements. J. Geophys. Res. Atmos., 116, D12109, doi:  https://doi.org/10.1029/2010JD015139.CrossRefGoogle Scholar
  22. Pauwels, V. R. N., and G. J. M. De Lannoy, 2015: Error covariance calculation for forecast bias estimation in hydrologic data assimilation. Adv. Water Resour., 86, 284–296, doi:  https://doi.org/10.1016/j.advwatres.2015.05.013.CrossRefGoogle Scholar
  23. Reichle, R. H., and R. D. Koster, 2004: Bias reduction in short records of satellite soil moisture. Geophys. Res. Lett., 31, L19501, doi:  https://doi.org/10.1029/2004GL020938.CrossRefGoogle Scholar
  24. Reichle, R. H., D. Entekhabi, and D. B. McLaughlin, 2001: Down-scaling of radio brightness measurements for soil moisture estimation: A four-dimensional variational data assimilation approach. Water Resour. Res., 37, 2353–2364, doi:  https://doi.org/10.1029/2001WR000475.CrossRefGoogle Scholar
  25. Sakaguchi, K., and K. B. Zeng, 2009: Effects of soil wetness, plant litter, and under-canopy atmospheric stability on ground evaporation in the Community Land Model (CLM3.5). J. Geophys. Res. Atmos., 144, D01107, doi:  https://doi.org/10.1029/2008JD010834.Google Scholar
  26. Seuffert, G., H. Wilker, P. Viterbo, et al., 2003: Soil moisture analysis combining screen-level parameters and microwave brightness temperature: A test with field data. Geophys. Res. Lett., 30, 1498, doi:  https://doi.org/10.1029/2003GL017128.CrossRefGoogle Scholar
  27. Walker, J. P., and P. R. Houser, 2004: Requirements of a global near-surface soil moisture satellite mission: Accuracy, repeat time, and spatial resolution. Adv. Water Resour., 27, 785–801, doi:  https://doi.org/10.1016/j.advwatres.2004.05.006.CrossRefGoogle Scholar
  28. Walker, J. P., G. R. Willgoose, and J. D. Kalma, 2002: Three-dimensional soil moisture profile retrieval by assimilation of near-surface measurements: Simplified Kalman filter covariance forecasting and field application. Water Resour. Res., 38, 1301, doi:  https://doi.org/10.1029/2002WR001545.CrossRefGoogle Scholar
  29. Yan, H. X., C. M. DeChant, and H. Moradkhani, 2015: Improving soil moisture profile prediction with the particle filter-Markov chain Monte Carlo method. IEEE Trans. Geosci. Remote Sens., 33, 6134–6147, doi:  https://doi.org/10.1109/TGRS.2015.2432067.CrossRefGoogle Scholar
  30. Yang, K., T. Watanabe, T. Koike, et al., 2007: Auto-calibration system developed to assimilate AMSR-E data into a land surface model for estimating soil moisture and the surface energy budget. J. Meteor. Soc. Japan, 85A, 229–242, doi:  https://doi.org/10.2151/jmsj.85A.229.CrossRefGoogle Scholar
  31. Zhang, F., C. Snyder, and J. Z. Sun, 2004: Impacts of initial estimate and observation availability on convective-scale data assimilation with an ensemble Kalman filter. Mon. Wea. Rev., 132, 1238–1253, doi:  https://doi.org/10.1175/1520-0493(2044)132<1288:IOIEAO>2.0.CO;2.CrossRefGoogle Scholar
  32. Zhang, S. W., H. R. Li, W. D. Zhang, et al., 2005: Estimating the soil moisture profile by assimilating near-surface observations with the ensemble Kalman filter (EnKF). Adv. Atmos. Sci., 22, 936–945, doi:  https://doi.org/10.1007/BF02918692.CrossRefGoogle Scholar
  33. Zhang, S. W., X. B. Zeng, W. D. Zhang, et al., 2010: Revising the ensemble-based Kalman filter covariance for the retrieval of deep-layer soil moisture. J. Hydrometeorol., 11, 219–227, doi:  https://doi.org/10.1175/2009JHM1146.1.CrossRefGoogle Scholar
  34. Zhang, S. W., D. Q. Li, and C. J. Qiu, 2011: A multimodel ensemble-based Kalman filter for the retrieval of soil moisture profiles. Adv. Atmos. Sci., 28, 195–206, doi:  https://doi.org/10.1007/s00376-010-9200-6.CrossRefGoogle Scholar
  35. Zhang, S. W., Y. H. Liu, and W. D. Zhang, 2013: Ensemble square root filter assimilation of near-surface soil moisture and reference-level observations into a coupled land surface-boundary layer model. Acta Meteor. Sinica, 27, 541–555, doi:  https://doi.org/10.1007/s13351-013-0402-6.CrossRefGoogle Scholar
  36. Zhou, Y. H., D. McLaughlin, and D. Entekhabi, 2006: Assessing the performance of the ensemble Kalman filter for land surface data assimilation. Mon. Wea. Rev., 134, 2128–2142, doi:  https://doi.org/10.1175/MWR3153.1.CrossRefGoogle Scholar

Copyright information

© The Chinese Meteorological Society and Springer-Verlag Berlin Heidelberg 2019

Authors and Affiliations

  • Bangjun Cao
    • 1
    • 2
  • Fuping Mao
    • 2
    • 3
  • Shuwen Zhang
    • 2
    Email author
  • Shaoying Li
    • 2
  • Tian Wang
    • 2
    • 4
  1. 1.School of Atmospheric SciencesChengdu University of Information TechnologyChengduChina
  2. 2.Key Laboratory for Semi-Arid Climate Change of the Ministry of Education, College of Atmospheric SciencesLanzhou UniversityLanzhouChina
  3. 3.NanpingChina
  4. 4.Moji Co. Ltd.BeijingChina

Personalised recommendations