Advertisement

Journal of Meteorological Research

, Volume 33, Issue 4, pp 784–796 | Cite as

Perturbations in Earth’s Atmosphere over An Indian Region during the Total Solar Eclipse on 22 July 2009

  • S. B. Surendra Prasad
  • Vinay Kumar
  • K. Krishna ReddyEmail author
  • S. K. Dhaka
  • Shristy Malik
  • M. Venkatarami Reddy
  • U. Murali Krishna
Regular Atricle
  • 7 Downloads

Abstract

During a total solar eclipse (TSE) on 22 July 2009, atmospheric perturbations were monitored from the surface to thermosphere to understand TSE’s impact on the meteorological (temperature, relative humidity, wind speed, and wind direction) and chemical (O3 and NOx) parameters around Kadapa (14.28°N, 78.42°E), a tropical semi-arid region of India. For this purpose, an experiment was conducted at Yogi Vemana University Campus, Kadapa, India, to measure the temperature, wind speed, wind direction, and concentrations of ozone (O3), NO, NO2, and NOx by using the automatic weather station (AWS) and O3 analyzer. On the eclipse day (22 July 2009), the surface observations at Kadapa showed a reduction in temperature (about 1.1°C) because of the solar insulation. Comparison of the thermal, dynamical (wind), and chemical parameters on the TSE day with control days [preceding (21 July 2009) and succeeding (23 July 2009) the TSE] illustrated the influence of solar eclipse. During the eclipse period, the O3 mixing ratio decreased, while NO2 and NOx increased; however, NO remained unchanged. In addition, radio occultation (RO) temperature profiles from Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC)/Formosat Satellite Mission (FORMOSAT-3) and Thermosphere, Ionosphere, and Mesosphere Energetics and Dynamics (TIMED) satellites were utilized to understand the impact of TSE on dynamics of the middle and upper atmosphere from tropopause to the thermosphere. High vertical resolution COSMIC observations revealed that during the solar eclipse, tropopause was cooler with twin peaks (double tropopause). The lower thermosphere between 110 and 130 km became warmer during the TSE, which might be caused by the dynamical response of the atmosphere in this region to the solar eclipse. The experimental data have provided very fine-scale variations of the atmospheric parameters both in time and height and also constituted a new set of results on TSE for further research.

Key words

total solar eclipse (TSE) atmospheric perturbations tropopause dynamics COSMIC/FORMOSAT-3 satellite radio occultation (RO) observations 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

We sincerely acknowledge the Indian Space Research Organization (ISRO), Bangaluru for sponsoring the Semi-arid-zone Atmopsheric Research Centre (SARC) at Yogi Vemana University, Kadapa to carry out this study. COSMIC data are obtained from the website https://cdaac-www.cosmic.ucar.edu/cdaac/login/cosmic/level2/wetPrf/ and authors are very much thankful to all members of CDAAC team for providing the COSMIC data freely. The authors acknowledge efforts of the TIMED/SABER team for free access to the data. Mr. S. B. Surendra Prasad and Mr. M. Venkatarami Reddy greatly acknowledge ISRO, Govt. of India for providing the financial support through research fellowships to carry out this study.

References

  1. Abraham, S., S. K. Dhaka, N. Nath, et al., 1998: Ionospheric absorption on October 24, 1995 solar eclipse. Geophys. Res. Lett., 25, 2945–2947, doi:  https://doi.org/10.1029/98GL01781.CrossRefGoogle Scholar
  2. Amiridis, V., D. Melas, D. S. Balis, et al., 2007: Aerosol Lidar observations and model calculations of the Planetary Boundary Layer evolution over Greece, during the March 2006 Total Solar Eclipse. Atmos. Chem. Phys., 7, 6181–6189, doi:  https://doi.org/10.5194/acp-7-6181-2007.CrossRefGoogle Scholar
  3. Anderson, R. C., D. R. Keefer, and O. E. Myers, 1972: Atmospheric pressure and temperature changes during the 7 March 1970 solar eclipse. J. Atmos. Sci., 29, 583–587, doi:  https://doi.org/10.1175/1520-0469(1972)029<0583:APATCD>2.0.CO;2.CrossRefGoogle Scholar
  4. Appu, K. S., K. S. Santhikumar, R. Padmanabha Pillai, et al., 1997: Results of the October 24, 1995 solar eclipse balloon experiments from Thumba. Kodaikanal Obs. Bull. A, 13, 155–159.Google Scholar
  5. Bhat, G. S., and R. Jagannathan, 2012: Moisture depletion in the surface layer in response to an annular solar eclipse. J. Atmos. Sol. -Terr. Phys., 80, 60–67, doi:  https://doi.org/10.1016/j.jastp.2012.02.025.CrossRefGoogle Scholar
  6. Bhattacharya, R., M. Roy, M. Biswas, et al., 2010: Cosmic ray intensity and surface parameters during solar eclipse on 22 July 2009 at Kalyani in West Bengal. Curr. Sci., 98, 1609–1614.Google Scholar
  7. Boitman, O. N., A. D. Kalikhman, and A. V. Tashchilin, 1999: The midlatitude ionosphere during the total solar eclipse of March 9, 1997. J. Geophys. Res. Space Phys., 104, 28,197–28,206, doi:  https://doi.org/10.1029/1999JA900228.CrossRefGoogle Scholar
  8. Chakrabarty, D. K., N. C. Shah, and K. V. Pandya, 1997: Fluctuation in ozone column over Ahmedabad during the solar eclipse of 24 October 1995. Geophys. Res. Lett., 24, 3001–3003, doi:  https://doi.org/10.1029/97GL03016.CrossRefGoogle Scholar
  9. Chimonas, G., and C. O. Hines, 1971: Atmospheric gravity waves induced by a solar eclipse, 2. J. Geophys. Res. Space Phys., 76, 7003–7005, doi:  https://doi.org/10.1029/JA076i028p07003.CrossRefGoogle Scholar
  10. Chung, Y. S., H. S. Kim, and S. H. Choo, 2010: The solar eclipse and associated atmospheric variations observed in South Korea on 22 July 2009. Air Qual. Atmos. Health, 3, 125–130, doi:  https://doi.org/10.1007/s11869-009-0060-0.CrossRefGoogle Scholar
  11. Cohen, E. A., 1984: The study of the effect of solar eclipses on the ionosphere based on satellite beacon observations. Radio Sci., 19, 769–777, doi:  https://doi.org/10.1029/RS019i003p00769.CrossRefGoogle Scholar
  12. Dhaka, S. K., V. Kumar, R. K. Choudhary, et al., 2015: Indications of a strong dynamical coupling between the polar and tropical regions during the sudden stratospheric warming event January 2009, based on COSMIC/FORMOSAT-3 satellite temperature data. Atmos. Res., 666, 60–69, doi:  https://doi.org/10.1016/j.atmosres.2015.06.008.CrossRefGoogle Scholar
  13. Dutta, G., M. N. Joshi, N. Pandarinath, et al., 1999: Wind and temperature over Hyderabad during the solar eclipse of 24 Oct. 1995. Indian J. Radio Space Phys., 28, 11–14.Google Scholar
  14. Dutta, G., P. Vinay Kumar, M. Venkat Ratnam, et al., 2011: Response of tropical lower atmosphere to annular solar eclipse of 15 January, 2010. J. Atmos. Sol. -Terr. Phys., 73, 1907–1914, doi:  https://doi.org/10.1016/j.jastp.2011.04.025.CrossRefGoogle Scholar
  15. Espenak, F., and J. Anderson, 2008: Total solar eclipse of 2009 July 22. NASA/TP—2008-214169, National Aeronautics and Space Administration, Goddard Space Flight Center, Maryland, USA, 1–4.Google Scholar
  16. Farges, T., J. C. Jodogne, R. Bamford, et al., 2001: Disturbances of the western European ionosphere during the total solar eclipse of 11 August 1999 measured by a wide ionosonde and radar network. J. Atmos. Sol. -Terr. Phys., 63, 915–924, doi:  https://doi.org/10.1016/S1364-6826(00)00195-4.CrossRefGoogle Scholar
  17. Founda, D., D. Melas, S. Lykoudis, et al., 2007: The effect of the total solar eclipse of 29 March 2006 on meteorological variables in Greece. Atmos. Chem. Phys., 7, 5543–5553, doi:  https://doi.org/10.5194/acp-7-5543-2007.CrossRefGoogle Scholar
  18. Ho, S.-P., G. Kirchengast, S. Leroy, et al., 2009: Estimating the uncertainty of using GPS radio occultation data for climate monitoring: Intercomparison of CHAMP refractivity climate records from 2002 to 2006 from different data centers. J. Geophys. Res. Atmos., 144, D23107, doi:  https://doi.org/10.1029/2009JD011969.CrossRefGoogle Scholar
  19. Ho, S.-P., X. J. Zhou, Y.-H. Kuo, et al., 2010a: Global evaluation of radiosonde water vapor systematic biases using GPS radio occultation from COSMIC and ECMWF analysis. Remote Sens., 2, 1320–1330, doi:  https://doi.org/10.3390/rs2051320.CrossRefGoogle Scholar
  20. Ho, S.-P., Y.-H. Kuo, W. Schreiner, et al., 2010b: Using Si-traceable global positioning system radio occultation measurements for climate monitoring [in “State of the Climate in 2009]. Bull. Amer. Meteor. Soc., 91, S36–S37.Google Scholar
  21. Krishnan, P., P. K. Kunhikrishnan, S. M. Nair, et al., 2004: Observations of the atmospheric surface layer parameters over a semi arid region during the solar eclipse of August 11th, 1999. J. Earth Syst. Sci., 113, 353–363, doi:  https://doi.org/10.1007/BF02716730.CrossRefGoogle Scholar
  22. Kumar, S., A. K. Singh, and R. P. Singh, 2013: Ionospheric response to total solar eclipse of 22 July 2009 in different Indian regions. Ann. Geophys., 31, 1549–1558, doi:  https://doi.org/10.5194/angeo-31-1549-2013.CrossRefGoogle Scholar
  23. Kumar, S. S., and R. Rengaiyan, 2011: Influence of solar eclipse on seawater. Nat. Sci., 3, 69–74, doi:  https://doi.org/10.4236/ns.2011.31010.Google Scholar
  24. Kumar, V., S. K. Dhaka, K. K. Reddy, et al., 2014: Impact of quasi-biennial oscillation on the inter-annual variability of the tropopause height and temperature in the tropics: A study using COSMIC/FORMOSAT-3 observations. Atmos. Res., 139, 62–70, doi:  https://doi.org/10.1016/j.atmosres.2013.12.014.CrossRefGoogle Scholar
  25. Kumar, V., S. K. Dhaka, S.-P. Ho, et al., 2017: Impact of inter-seasonal solar variability on the association of lower troposphere and cold point tropopause in the tropics: Observations using RO data from COSMIC. Atmos. Res., 698, 216–225, doi:  https://doi.org/10.1016/j.atmosres.2017.08.026.CrossRefGoogle Scholar
  26. Kwak, K.-H., Y.-H. Ryu, and J.-J. Baik, 2011: Temporal and spatial variations of NOx and ozone concentrations in Seoul during the solar eclipse of 22 July 2009. J. Appl. Meteor. Climatol., 50, 500–506, doi:  https://doi.org/10.1175/2010JAMC2561.1.CrossRefGoogle Scholar
  27. Maurya, A. K., D. V. Phanikumar, R. Singh, et al., 2014: Low-mid latitude D region ionospheric perturbations associated with 22 July 2009 total solar eclipse: Wave-like signatures inferred from VLF observations. J. Geophys. Res. Space Phys., 119, 8512–8523, doi:  https://doi.org/10.1002/2013JA019521.CrossRefGoogle Scholar
  28. Mlynczak, M. G., 1997: Energetics of the mesosphere and lower thermosphere and the SABER experiment. Adv. Space Res., 20, 1177–1183, doi:  https://doi.org/10.1016/S0273-1177(97)00769-2.CrossRefGoogle Scholar
  29. Muraleedharan, P. M., P. G. Nisha, and K. Mohankumar, 2011: Effect of January 15: 2010 annular solar eclipse on meteorological parameters over Goa, India. J. Atmos. Sol. -Terr. Phys., 73, 1988–1998, doi:  https://doi.org/10.1016/j.jastp.2011.06.003.CrossRefGoogle Scholar
  30. Nair, P. R., D. Chand, S. Lal, et al., 2002: Temporal variations in surface ozone at Thumba (8.6°N, 77°E)-a tropical coastal site in India. Atmos. Environ., 36, 603–610, doi:  https://doi.org/10.1016/S1352-2310(01)00527-1.CrossRefGoogle Scholar
  31. Namboodiri, K. V. S., P. K. Dileep, K. Mammen, et al., 2011: Effects of annular solar eclipse of 15 January 2010 on meteorological parameters in the 0 to 65 km region over Thumba, India. Meteor. Z., 20, 635–647, doi:  https://doi.org/10.1127/0941-2948/2011/0253.CrossRefGoogle Scholar
  32. Narasimha, R., A. Prabhu, K. Narahari Rao, et al., 1982: Atmospheric boundary layer experiment. Proc. Indian Natn. Sci. Acad., 48A, 175–186.Google Scholar
  33. Nishanth, T., N. Ojha, M. K. S. Kumar, et al., 2011: Influence of solar eclipse of 15 January 2010 on surface ozone. Atmos. Environ., 45, 1752–1758, doi:  https://doi.org/10.1016/j.atmosenv.2010.12.034.CrossRefGoogle Scholar
  34. Nymphas, E. F., M. O. Adeniyi, M. A. Ayoola, et al., 2009: Micro-meteorological measurements in Nigeria during the total solar eclipse of 29 March 2006. J. Atmos. Sol. -Terr. Phys., 71, 1245–1253, doi:  https://doi.org/10.1016/j.jastp.2009.04.014.CrossRefGoogle Scholar
  35. Phanikumar, D. V., Y.-S. Kwak, A. K. Patra, et al., 2014: Response of the mid-latitude D-region ionosphere to the total solar eclipse of 22 July 2009 studied using VLF signals in South Korean peninsula. Adv. Space. Res., 54, 961–968, doi:  https://doi.org/10.1016/j.asr.2014.06.005.CrossRefGoogle Scholar
  36. Ramchandran, P. M., R. Ramchandra, K. Sen Gupta, et al., 2002: Atmospheric surface-layer processes during the total solar eclipse of 11 August 1999. Bound. -Layer Meteor., 104, 445–461, doi:  https://doi.org/10.1023/A:1016577306546.CrossRefGoogle Scholar
  37. Randel, W. J., D. J. Seidel, and L. Pan, 2007: Observational characteristics of double tropopauses. J. Geophys. Res. Atmos., 112, D07309, doi:  https://doi.org/10.1029/2006JD007904.Google Scholar
  38. Rao, K. G., N. N. Reddy, G. Ramakrishna, et al., 2013: Near surface atmospheric response to the total solar eclipse at Dibrugarh on 22 July 2009. J. Atmos. Sol. -Terr. Phys., 95, 87–95, doi:  https://doi.org/10.1016/j.jastp.2013.01.001.CrossRefGoogle Scholar
  39. Ratnam, M. V., M. Shravan Kumar, G. Basha, et al., 2010: Effect of the annular solar eclipse of 15 January 2010 on the lower atmospheric boundary layer over a tropical rural station. J. Atmos. Sol. -Terr. Phys., 72, 1393–1400, doi:  https://doi.org/10.1016/j.jastp.2010.10.009.CrossRefGoogle Scholar
  40. Ratnam, M. V., G. Basha, M. Roja Raman, et al., 2011: Unusual enhancement in temperature and ozone vertical distribution in the lower stratosphere observed over Gadanki, India, following the 15 January 2010 annular eclipse. Geophys. Res. Lett., 38, L02803, doi:  https://doi.org/10.1029/2010GL045903.CrossRefGoogle Scholar
  41. Remsberg, E. E., B. T. Marshall, M. Garcia-Comas, et al., 2008: Assessment of the quality of the version 1.07 temperature-versus-pressure profiles of the middle atmosphere from TIMED/SABER. J. Geophys. Res. Atmos., 113, D17101, doi:  https://doi.org/10.1029/2008JD010013.CrossRefGoogle Scholar
  42. Russell, J. M., M. G. Mlynczak, L. L. Gordley, et al., 1999: Overview of the SABER experiment and preliminary calibration results. Proceedings of SPIE 3756, Optical Spectroscopic Techniques and Instrumentation for Atmospheric and Space Research III, SPIE, Denver, CO, USA, 277–288, doi:  https://doi.org/10.1117/12.366382.Google Scholar
  43. Sharma, S. K., T. K. Mandal, B. C. Arya, et al., 2010: Effects of the solar eclipse on 15 January 2010 on the surface O3, NO, NO2, NH3, CO mixing ratio and the meteorological parameters at Thiruvanathapuram, India. Ann. Geophys., 28, 1199–1205, doi:  https://doi.org/10.5194/angeo-28-1199-2010.CrossRefGoogle Scholar
  44. Singh, L., T. R. Tyagi, Y. V. Somayajulu, et al., 1989: A multi-station satellite radio beacon study of ionospheric variations during total solar eclipses. J. Atmos. Sol. -Terr. Phys., 51, 271–278, doi:  https://doi.org/10.1016/0021-9169(89)90078-0.CrossRefGoogle Scholar
  45. Subrahamanyam, B. D., and T. J. Anurose, 2011: Solar eclipse induced impacts on sea/land breeze circulation over Thumba: A case study. J. Atmos. Sol. -Terr. Phys., 73, 703–708, doi:  https://doi.org/10.1016/j.jastp.2011.01.002.CrossRefGoogle Scholar
  46. Subrahmanyam, K. V., G. Ramkumar, K. K. Kumar, et al., 2011: Temperature perturbations in the troposphere-stratosphere over Thumba (8.5°N, 76.9°E) during the solar eclipse 2009/2010. Ann. Geophys., 29, 275–282, doi:  https://doi.org/10.5194/angeo-29-275-2011.CrossRefGoogle Scholar
  47. Szałowski, K., 2002: The effect of the solar eclipse on the air temperature near the ground. J. Atmos. Sol. -Terr. Phys., 64, 1589–1600, doi:  https://doi.org/10.1016/S1364-6826(02)00134-7.CrossRefGoogle Scholar
  48. Tzanis, C., C. Varotsos, and L. Viras, 2008: Impacts of the solar eclipse of 29 March 2006 on the surface ozone concentration, the solar ultraviolet radiation and the meteorological parameters at Athens, Greece. Atmos. Chem. Phys., 8, 425–430, doi:  https://doi.org/10.5194/acp-8-425-2008.CrossRefGoogle Scholar
  49. Wang, K.-Y., and C.-H. Liu, 2010: Profiles of temperature responses to the 22 July 2009 total solar eclipse from FORMOSAT-3/COSMIC constellation. Geophys. Res. Lett., 37, L01804, doi:  https://doi.org/10.1029/2009GL040968.Google Scholar
  50. Zerefos, C. S., D. S. Balis, C. Meleti, et al., 2000: Changes in surface solar UV irradiances and total ozone during the solar eclipse of August 11, 1999. J. Geophys. Res. Atmos., 105, 26,463–26,473, doi:  https://doi.org/10.1029/2000JD900412.CrossRefGoogle Scholar
  51. Zerefos, C. S., E. Gerasopoulos, I. Tsagouri, et al., 2007: Evidence of gravity waves into the atmosphere during the March 2006 total solar eclipse. Atmos. Chem. Phys., 7, 4943–4951, doi:  https://doi.org/10.5194/acp-7-4943-2007.CrossRefGoogle Scholar

Copyright information

© The Chinese Meteorological Society and Springer-Verlag Berlin Heidelberg 2019

Authors and Affiliations

  • S. B. Surendra Prasad
    • 1
  • Vinay Kumar
    • 2
  • K. Krishna Reddy
    • 1
    Email author
  • S. K. Dhaka
    • 2
  • Shristy Malik
    • 3
  • M. Venkatarami Reddy
    • 1
  • U. Murali Krishna
    • 1
  1. 1.Semi-arid-zone Atmospheric Research Centre (SARC), Department of PhysicsYogi Vemana UniversityKadapaIndia
  2. 2.Radio and Atmospheric Physics Lab, Rajdhani CollegeUniversity of DelhiDelhiIndia
  3. 3.Department of Applied PhysicsDelhi Technical UniversityDelhiIndia

Personalised recommendations