Journal of Meteorological Research

, Volume 33, Issue 2, pp 206–218 | Cite as

Impacts of Soil Moisture on the Numerical Simulation of a Post-Landfall Storm

  • Feimin Zhang
  • Zhaoxia PuEmail author
  • Chenghai Wang
Special Collection on Weather and Climate under Complex Terrain and Variable Land Surfaces: Observations and Numerical Simulations


Surface heat and moisture fluxes are important to the evolution of a tropical storm after its landfall. Soil moisture is one of the essential components that influence surface heating and moisture fluxes. In this study, the impact of soil moisture on a pre-landfall numerical simulation of Tropical Storm Bill (2015), which had a much longer lifespan over land, is investigated by using the research version of the NCEP Hurricane Weather Research and Forecasting (HWRF) model. It is found that increased soil moisture with SLAB scheme before storm’s landfall tends to produce a weaker storm after landfall and has negative impacts on storm track simulation. Further diagnoses with different land surface schemes and sensitivity experiments indicate that the increase in soil moisture inside the storm corresponds to a strengthened vertical mixing within the storm boundary layer, which is conducive to the decay of storm and has negative impacts on storm evolution. In addition, surface diabatic heating effects over the storm environment are also found to be an important positive contribution to the storm evolution over land, but their impacts are not so substantial as boundary layer vertical mixing inside the storm. The overall results highlight the importance and uncertainty of soil moisture in numerical model simulations of landfalling hurricanes and their further evolution over land.

Key words

soil moisture tropical storm tropical cyclone landfall land surface numerical simulation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This study is initially conducted when the first author (FZ) visited the University of Utah. The research was supported by National Science Foundation Award #AGS-1243027 (ZP and FZ). High-performance computing support from Yellowstone (ark:/85065/d7wd3xhc), provided by NCAR’s Computational and Information Systems Laboratory (CISL) and the Center for High-Performance Computing (CHPC) at the University of Utah, is greatly appreciated. Authors also thank the Development Testbed Center (DTC) at the National Center for Atmospheric Research (NCAR) for their efforts to make the community research version of the HWRF model available on a public website. The first and third authors (FZ and CW) were also supported by the National Natural Science Foundation of China (41805032), and the Fundamental Research Funds of the Central Universities (lzujbky-2017-71).

Two anonymous reviewers are appreciated for their constructive comments that are very helpful for improving the manuscript.


  1. Arndt, D. S., J. B. Basara, R. A. McPherson, et al., 2009: Observations of the overland reintensification of tropical storm Erin (2007). Bull. Amer. Meteor. Soc, 90, 1079–1093, doi: 10.1175/2009BAMS2644.1.CrossRefGoogle Scholar
  2. Beljaars, A. C. M., P. Viterbo, M. J. Miller, et al., 1996: The anomalous rainfall over the United States during July 1993: Sensitivity to land surface parameterization and soil moisture anomalies. Mon. Wea. Rev., 124, 362–383, doi: 101175/1520-0493(1996)124<0362:TAROTU>2.0.CO;2.CrossRefGoogle Scholar
  3. Betts, A. K., J. H. Ball, A. Beljaars, et al., 1996: The land surface-atmosphere interaction: A review based on observational and global modeling perspectives. J. Geophys. Res. Atmos., 101, 7209–7225, doi: 10.1029/95JD02135.CrossRefGoogle Scholar
  4. Bozeman, M. L., D. Niyogi, S. Gopalakrishnan, et al., 2012: An HWRF-based ensemble assessment of the land surface feedback on the post-landfall intensification of Tropical Storm Fay (2008). Nat. Hazards, 63, 1543–1571, doi: 10.1007/s110 69-011-9841-5.CrossRefGoogle Scholar
  5. Braun, S. A., and W. K. Tao, 2000: Sensitivity of high-resolution simulations of Hurricane Bob (1991) to planetary boundary layer parameterizations. Mon. Wea. Rev., 128, 3941–3961, doi: 10.1175/1520-0493(2000)129<3941:SOHRSO>2.0.CO;2.CrossRefGoogle Scholar
  6. Breuer, H., F. Ács, B. Laza, et al., 2012: Sensitivity of MM5-sim-ulated planetary boundary layer height to soil dataset: comparison of soil and atmospheric effects. Theor. Appl. Clima-tol, 109, 577–590, doi: 10.1007/s00704-012-0597-y.CrossRefGoogle Scholar
  7. Chen, F., and J. Dudhia, 2001: Coupling an advanced land surface-hydrology model with the Penn State-NCAR MM5 modeling system. Part I: Model description and implementation. Mon. Wea. Rev., 129, 569–585, doi: 10.1175/1520-0493 (2001)129<0569:CAALSH>2.0.CO;2.CrossRefGoogle Scholar
  8. Deardorff, J. W., 1978: Efficient prediction of ground surface temperature and moisture, with inclusion of a layer of vegetation. J. Geophys. Res. Oceans, 3, 1889–1903, doi: 10.1029/JC083iC04p01889.CrossRefGoogle Scholar
  9. Eltahir, E. A. B., 1998: A soil moisture-rainfall feedback mechanism: 1. Theory and observations. Water Resour. Res., 34 765-776, doi: 10.1029/97WR03499.Google Scholar
  10. Emanuel, K., J. Callaghan, and P. Otto, 2008: A hypothesis for the redevelopment of warm-core cyclones over northern Australia. Mon. Wea. Rev., 136, 3863–3872, doi: 10.1175/2008 MWR2409.1.CrossRefGoogle Scholar
  11. Evans, C., R. S. Schumacher, and T. J. Jr. Galarneau, 2011: Sensitivity in the overland reintensification of Tropical Cyclone Erin (2007) to near-surface soil moisture characteristics. Mon. Wea. Rev., 139, 3848–3870, doi: 10.1175/2011MWR3593.1.CrossRefGoogle Scholar
  12. Ferrier, B. S., Y. Jin, Y. Lin, et al., 2002: Implementation of a new grid-scale cloud and precipitation scheme in the NCEP Eta model. 19th Conference on Weather Analysis and Forecasting/15th Conference on Numerical Weather Prediction. American Meteorological Society, San Antonio, TX.Google Scholar
  13. Findell, K. L., and E. A. B. Eltahir, 2003: Atmospheric controls on soil moisture-boundary layer interactions. Part I: Framework development. J. Hydrometeorol., 4, 552–569, doi: 10.11 75/1525-7541(2003)004<0552:ACOSML>2.0.CO;2.CrossRefGoogle Scholar
  14. Gopalakrishnan, S. G., F. Jr. Marks, X. J. Zhang, et al., 2011: The experimental HWRF system: A study on the influence of horizontal resolution on the structure and intensity changes in tropical cyclones using an idealized framework. Mon. Wea. Rev., 139, 1762–1784, doi: 10.1175/2010MWR3535.1.CrossRefGoogle Scholar
  15. Gopalakrishnan, S. G., F. Jr. Marks, J. A. Zhang, et al, 2013: A study of the impacts of vertical diffusion on the structure and intensity of the tropical cyclones using the high-resolution HWRF system. J. Atmos. Sci., 70, 524–541, doi: 101175/JAS-D-11-0340.1.CrossRefGoogle Scholar
  16. Hart, R. E., and J. L. Evans, 2001: A climatology of the extratropical transition of Atlantic tropical cyclones. J. Climate, 14, 546–564, doi: 10.1175/1520-0442(2001)014<0546:ACOTET> 2.0.CO;2.CrossRefGoogle Scholar
  17. Horváth, Á., F. Ács, and H. Breuer, 2009: On the relationship between soil, vegetation and severe convective storms: Hungarian case studies. Atmos. Res., 93, 66–81, doi: 10.1016/ Scholar
  18. Hou, D. C., M. Charles, Y. Luo, et al, 2014: Climatology-calibrated precipitation analysis at fine scales: Statistical adjustment of stage IV toward CPC gauge-based analysis. J. Hydro-meteorol., 15, 2542–2557, doi: 10.1175/JHM-D-11-0140.1.Google Scholar
  19. Janjic, Z. I., R. Gall, and M. E. Pyle, 2010: Scientific documentation for the NMM solver. NCAR Tech. Note NCAR/TN-4771STR, NCAR, 53 pp, doi: 10.5065/D6MW2F3Z.Google Scholar
  20. Jones, S. C., P. A. Harr, J. Abraham, et al., 2003: The extratropical transition of tropical cyclones: Forecast challenges, current understanding, and future directions. Wea. Forecasting, 18, 1052–1092, doi: 1011751520-04342003)018<1052TETO TC>2.0.CO;2.CrossRefGoogle Scholar
  21. Kishtawal, C. M., D. Niyogi, A. Kumar, et al, 2012: Sensitivity of inland decay of North Atlantic tropical cyclones to soil parameters. Nat. Hazards, 63, 1527–1542, doi: 10.1007/s11069-011-0015-2.CrossRefGoogle Scholar
  22. Koster, R. D., Z. C. Guo, R. Q. Yang, et al., 2009: On the nature of soil moisture in land surface models. J. Climate, 22 4322–4335, doi: 10.1175/2009JCLI2832.1.CrossRefGoogle Scholar
  23. Kurihara, Y., and R. E. Tuleya, 1974: Structure of a tropical cyclone developed in a three-dimensional numerical simulation model. J. Atmos. Sci, 31, 893–919, doi: 10.1175/1520-0469 (1974)031<0893:SOATCD>2.0.CO;2.CrossRefGoogle Scholar
  24. Lanicci, J. M., T. N. Carlson, and T. T. Warner, 1987: Sensitivity of the Great Plains severe-storm environment to soil-moisture distribution. Mon. Wea. Rev., 115, 2660–2673, doi: 10.1175/1520-0493(1987)115<2660:SOTGPS>2.0.CO;2.CrossRefGoogle Scholar
  25. Lin, L-F., and Z. Pu, 2018: Characteristics of Background Error Covariance of Soil Moisture and Atmospheric States in Strongly Coupled Land-Atmosphere Data Assimilation. J Appl. Meteorol. Climatol, 57, 2507–2529.CrossRefGoogle Scholar
  26. Pan, H.-L., and J.-S. Wu, 1995: Implementing a mass flux convection parameterization package for the NMC medium-range forecast model. NMC Office Note 409. U.S. National Center for Environmental Prediction, Washington, DC, 40 pp.Google Scholar
  27. Pu, Z., H. Zhang, and J. A. Anderson, 2013: Ensemble Kalman filter assimilation of near-surface observations over complex terrain: Comparison with 3DVAR for short-range forecasts. Tellus A, 65, 19620.CrossRefGoogle Scholar
  28. Pu, Z., S. X. Zhang, M. J. Tong, et al., 2016: Influence of the self-consistent regional ensemble background error covariance on hurricane inner-core data assimilation with the GSI-based hybrid system for HWRF. J. Atmos. Sci., 73, 4911–4925, doi: 10.1175/JAS-D-16-0017.1.CrossRefGoogle Scholar
  29. Rossow, W. B., Y. C. Zhang, and G. Tselioudis, 2016: Atmospheric diabatic heating in different weather states and the general circulation. J. Climate, 29, 1059–1065, doi: 10.1175/JCLI-D-15-0760.1.CrossRefGoogle Scholar
  30. Schwarzkopf, M. D., and S. Fels, 1991: The simplified exchange method revisited: An accurate, rapid method for computation of infrared cooling rates and fluxes. J. Geophys. Res. Atmos., 96, 9075–9096, doi: 10.1029/89JD01598.CrossRefGoogle Scholar
  31. Shen, R. J., E. R. Reiter, and J. F. Bresch, 1986: Some aspects of the effects of sensible heating on the development of summer weather systems over the Tibetan Plateau. J. Atmos. Sci, 43, 2241–2260, doi: 0.1175/1520-0469(1986)043<2241:SAO TEO>2.0.CO;2.CrossRefGoogle Scholar
  32. Sirutis, J. J., and K. Miyakoda, 1990: Subgrid scale physics in 1-month forecasts. Part I: Experiment with four parameterization packages. Mon. Wea. Rev., 118, 1043–1064, doi: 10.11 75/1520-0493(1990)118<1043:SSPIMF>2.0.CO;2.CrossRefGoogle Scholar
  33. Smith, R. K., 2003: A simple model of the hurricane boundary layer. Quart. J. Roy. Meteor. Soc, 129, 1007–1027, doi: 10.1256/qj.01.197.CrossRefGoogle Scholar
  34. Tallapragada, V., L. Bernardet, M. K. Biswas, et al., 2014: Hurricane Weather Research and Forecasting (HWRF) Model: 2014 Scientific Documentation. NCAR HWRF Development Testbed Center Tech. Rep., 99 pp.Google Scholar
  35. Troen, I. B., and L. Mahrt, 1986: A simple model of the atmospheric boundary layer; sensitivity to surface evaporation. Bound-Layer Meteor, 37, 129–148, doi: 10.1007/BF00122 760.CrossRefGoogle Scholar
  36. Tuleya, R. E., 1994: Tropical storm development and decay: Sensitivity to surface boundary conditions. Mon. Wea. Rev., 122, 291–304, doi: 0.1175152004931994)122<029:TSDAD S>2.0.CO;2.CrossRefGoogle Scholar
  37. Wu, C.-C., and Y. Kurihara, 1996: A numerical study of the feedback mechanisms of hurricane-environment interaction on hurricane movement from the potential vorticity perspective. J. Atmos. Sci., 53, 2264–2282, doi: 10.1175/1520-0469(1996) 053<2264:ANSOTF>2.0.CO;2.CrossRefGoogle Scholar
  38. Zhang, F. M., and Z. X. Pu, 2017: Effects of vertical eddy diffus-ivity parameterization on the evolution of landfalling hurricanes. J. Atmos. Sci., 74, 1879–1905, doi: 10.1175/JAS-D-16-0214.1.CrossRefGoogle Scholar
  39. Zhang, F. M., Z. X. Pu, and C. H. Wang, 2017: Effects of boundary layer vertical mixing on the evolution of hurricanes over land. Mon. Wea. Rev., 145, 2343–2361, doi: 10.1175/MWR-D-16-0421.1.CrossRefGoogle Scholar
  40. Zhang, J. A., D. S. Nolan, R. F. Rogers, et al., 2015: Evaluating the impact of improvements in the boundary layer parameterization on hurricane intensity and structure forecasts in HWRF. Mon. Wea. Rev., 143, 3136–3155, doi: 10.1175/MWR-D-14-00339.1.CrossRefGoogle Scholar
  41. Zheng, X. Y., and E. A. B. Eltahir, 1998: A soil moisture-rainfall feedback mechanism: 2. Numerical experiments. Water Resour. Res., 34, 777–785, doi: 10.1029/97WR03497.CrossRefGoogle Scholar

Copyright information

© The Chinese Meteorological Society and Springer-Verlag Berlin Heidelberg 2019

Authors and Affiliations

  1. 1.College of Atmospheric SciencesLanzhou UniversityLanzhouChina
  2. 2.Department of Atmospheric SciencesUniversity of UtahSalt Lake CityUSA

Personalised recommendations