Advertisement

Journal of Meteorological Research

, Volume 33, Issue 1, pp 80–88 | Cite as

An Assessment of ENSO Stability in CAMS Climate System Model Simulations

  • Lijuan Hua
  • Lin ChenEmail author
  • Xinyao Rong
  • Jian Li
  • Guo Zhang
  • Lu Wang
Special Collection on CAMS-CSM
  • 3 Downloads

Abstract

We present an overview of the El Niño–Southern Oscillation (ENSO) stability simulation using the Chinese Academy of Meteorological Sciences climate system model (CAMS-CSM). The ENSO stability was quantified based on the Bjerknes (BJ) stability index. Generally speaking, CAMS-CSM has the capacity of reasonably representing the BJ index and ENSO-related air–sea feedback processes. The major simulation biases exist in the underestimated thermodynamic damping and thermocline feedbacks. Further diagnostic analysis reveals that the underestimated thermodynamic feedback is due to the underestimation of the shortwave radiation feedback, which arises from the cold bias in mean sea surface temperature (SST) over central–eastern equatorial Pacific (CEEP). The underestimated thermocline feedback is attributed to the weakened mean upwelling and weakened wind–SST feedback (μa) in the model simulation compared to observation. We found that the weakened μa is also due to the cold mean SST over the CEEP. The study highlights the essential role of reasonably representing the climatological mean state in ENSO simulations.

Key words

coupled general circulation model (CGCM) Bjerknes (BJ) stability index air–sea feedback 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

13351_2018_8092_MOESM1_ESM.pdf (934 kb)
An Assessment of ENSO Stability in CAMS Climate System Model Simulations

References

  1. An, S.-I., and J. Choi, 2013: Inverse relationship between the equatorial eastern Pacific annual-cycle and ENSO amplitudes in a coupled general circulation model. Climate Dyn., 40: 663–675, doi: 10.1007/s00382-012-1403-3.CrossRefGoogle Scholar
  2. Bellenger, H., E. Guilyardi, J. Leloup, et al., 2014: ENSO representation in climate models: From CMIP3 to CMIP5. Climate Dyn., 42: 1999–2018, doi: 10.1007/s00382-013-1783-z.CrossRefGoogle Scholar
  3. Chen, L., and Y. Q. Yu, 2014: Preliminary evaluations of ENSOrelated cloud and water vapor feedbacks in FGOALS. Flexible Global Ocean–Atmosphere–Land System Model, T. J. Zhou, Y. Q. Yu, Y. M. Liu, et al., Eds., Springer, Berlin, Heidelberg, 189–197, doi: 10.1007/978-3-642-41801-3_23.Google Scholar
  4. Chen, L., Y. Q. Yu, and D.-Z. Sun, 2013: Cloud and water vapor feedbacks to the El Niño warming: Are they still biased in CMIP5 models? J. Climate, 26: 4947–4961, doi: 10.1175/JCLI-D-12-00575.1.CrossRefGoogle Scholar
  5. Chen, L., Y. Q. Yu, and W. P. Zheng, 2016: Improved ENSO simulation from climate system model FGOALS-g1.0 to FGOALS-g2.0. Climate Dyn., 47: 2617–2634, doi: 10.1007/s00382-016-2988-8.CrossRefGoogle Scholar
  6. Chen, L., D.-Z. Sun, L. Wang, et al., 2018a: A further study on the simulation of cloud–radiative feedbacks in the ENSO cycle in the tropical Pacific with a focus on the asymmetry. Asia–Pacific J. Atmos. Sci., doi: 10.1007/s13143-018-0064-5.Google Scholar
  7. Chen, L., L. Wang, T. Li, et al., 2018b: Contrasting cloud radiative feedbacks during warm pool and cold tongue El Niños. SOLA, doi: 10.2151/sola.2018-022.Google Scholar
  8. Dai, Y. J., X. B. Zeng, R. E. Dickinson, et al., 2003: The common land model. Bull. Amer. Meteor. Soc., 84: 1013–1024, doi: 10.1175/BAMS-84-8-1013.CrossRefGoogle Scholar
  9. Ding, R. Q., J. P. Li, and Y.-H. Tseng, 2015: The impact of South Pacific extratropical forcing on ENSO and comparisons with the North Pacific. Climate Dyn., 44: 2017–2034, doi: 10.1007/s00382-014-2303-5.CrossRefGoogle Scholar
  10. Dong, L., T. J. Zhou, and X. L. Chen, 2014: Changes of Pacific decadal variability in the twentieth century driven by internal variability, greenhouse gases, and aerosols. Geophys. Res. Lett., 41: 8570–8577, doi: 10.1002/2014GL062269.CrossRefGoogle Scholar
  11. Duan, W. S., M. Mu, and B. Wang, 2004: Conditional nonlinear optimal perturbations as the optimal precursors for El Niño–Southern Oscillation events. J. Geophys. Res. Atmos., 109, D23105, doi: 10.1029/2004JD004756.CrossRefGoogle Scholar
  12. Ferrett, S., M. Collins, and H.-L. Ren, 2017: Understanding bias in the evaporative damping of El Niño–Southern Oscillation events in CMIP5 models. J. Climate, 30: 6351–6370, doi: 10.1175/JCLI-D-16-0748.1.CrossRefGoogle Scholar
  13. Ferrett, S., M. Collins, and H.-L. Ren, 2018: Diagnosing relationships between mean state biases and El Niño shortwave feedback in CMIP5 models. J. Climate, 31: 1315–1335, doi: 10.1175/JCLI-D-17-0331.1.CrossRefGoogle Scholar
  14. Giese, B. S., and S. Ray, 2011: El Niño variability in simple ocean data assimilation (SODA), 1871–2008. J. Geophys. Res. Oceans, 116, C02024, doi: 10.1029/2010JC006695.CrossRefGoogle Scholar
  15. Graham, N. E., and T. P. Barnett, 1987: Sea surface temperature, surface wind divergence, and convection over tropical oceans. Science, 238: 657–659, doi: 10.1126/science.238.4827.657.CrossRefGoogle Scholar
  16. Griffies, S. M., M. J. Harrison, R. C. Pacanowski, et al., 2004: A Technical Guide To MOM4. GFDL Ocean Group Technical Report No. 5. NOAA/Geophysical Fluid Dynamics Laboratory, 291 pp.Google Scholar
  17. Guilyardi, E., A. Wittenberg, A. Fedorov, et al., 2009: Understanding El Niño in ocean–atmosphere general circulation models: Progress and challenges. Bull. Amer. Meteor. Soc., 90: 325–340, doi: 10.1175/2008BAMS2387.1.CrossRefGoogle Scholar
  18. Hua, L. J., and L. Chen, 2019: ENSO asymmetry in the CAMSCSM. Asia–Pacific J. Atmos. Sci., doi: 10.1007/s13143-018-00102-9.Google Scholar
  19. Hua, L. J., L. Chen, X. Y. Rong, et al., 2018: Impact of atmospheric model resolution on simulation of ENSO feedback processes: A coupled model study. Climate Dyn., 51: 3077–3092, doi: 10.1007/s00382-017-4066-2.CrossRefGoogle Scholar
  20. Hua, L. J., D.-Z. Sun, and Y. Q. Yu, 2019: Why do we have El Niño: Quantifying a diabatic and nonlinear perspective using observations. Climate Dyn., doi: 10.1007/s00382-018-4541-4.Google Scholar
  21. Im, S.-H., S.-I. An, S. T. Kim, et al., 2015: Feedback processes responsible for El Niño–La Niña amplitude asymmetry. Geophys. Res. Lett., 42: 5556–5563, doi: 10.1002/2015GL064853.CrossRefGoogle Scholar
  22. Jin, F.-F., S. T. Kim, and L. Bejarano, 2006: A coupled-stability index for ENSO. Geophys. Res. Lett., 33, L23708, doi: 10.10 29/2006GL027221.CrossRefGoogle Scholar
  23. Kim, S. T., and F.-F. Jin, 2011a: An ENSO stability analysis. Part I: Results from a hybrid coupled model. Climate Dyn., 36: 1593–1607, doi: 10.1007/s00382-010-0796-0.Google Scholar
  24. Kim, S. T., and F.-F. Jin, 2011b: An ENSO stability analysis. Part II: Results from the twentieth and twenty-first century simulations of the CMIP3 models. Climate Dyn., 36: 1609–1627, doi: 10.1007/s00382-010-0872-5.Google Scholar
  25. Kim, S., W. J. Ca, F.-F. Jin, et al., 2014: ENSO stability in coupled climate models and its association with mean state. Climate Dyn., 42: 3313–3321, doi: 10.1007/s00382-013-1833–6.CrossRefGoogle Scholar
  26. Larkin, N. K., and D. E. Harrison, 2005: Global seasonal temperature and precipitation anomalies during El Niño autumn and winter. Geophys. Res. Lett., 32, L16705, doi: 10.1029/2005 GL022860.CrossRefGoogle Scholar
  27. Li, L. J., B. Wang, and G. J. Zhang, 2014: The role of nonconvective condensation processes in response of surface shortwave cloud radiative forcing to El Niño warming. J. Climate, 27: 6721–6736, doi: 10.1175/JCLI-D-13-00632.1.CrossRefGoogle Scholar
  28. Li, L. J., B. Wang, and G. J. Zhang, 2015: The role of moist processes in shortwave radiative feedback during ENSO in the CMIP5 models. J. Climate, 28: 9892–9908, doi: 10.1175/JCLID-15-0276.1.CrossRefGoogle Scholar
  29. Lloyd, J., E. Guilyardi, and H. Weller, 2012: The role of atmosphere feedbacks during ENSO in the CMIP3 models. Part III: The shortwave flux feedback. J. Climate, 25: 4275–4293, doi: 10.1175/JCLI-D-11-00178.1.Google Scholar
  30. Lu, B., F.-F. Jin, and H.-L. Ren, 2018: A coupled dynamic index for ENSO periodicity. J. Climate, 31: 2361–2376, doi: 10.11 75/JCLI-D-17-0466.1.CrossRefGoogle Scholar
  31. McPhaden, M. J., S. E. Zebiak, and M. H. Glantz, 2006: ENSO as an integrating concept in earth science. Science, 314: 1740–1745, doi: 10.1126/science.1132588.CrossRefGoogle Scholar
  32. Park, J. H., S.-I. An, and J.-S. Kug, 2017: Interannual variability of western North Pacific SST anomalies and its impact on North Pacific and North America. Climate Dyn., 49: 3787–3798, doi: 10.1007/s00382-017-3538-8.CrossRefGoogle Scholar
  33. Rayner, N. A., D. E. Parker, E. B. Horton, et al., 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res. Atmos., 108: 4407, doi: 10.1029/2002jd002670.CrossRefGoogle Scholar
  34. Ren, H.-L., and F.-F. Jin, 2011: Niño indices for two types of ENSO. Geophys. Res. Lett., 38, L04704, doi: 10.1029/2010GL046031.CrossRefGoogle Scholar
  35. Ren, H.-L., and F.-F. Jin, 2013: Recharge oscillator mechanisms in two types of ENSO. J. Climate, 26: 6506–6523, doi: 10.1175/JCLI-D-12-00601.1.CrossRefGoogle Scholar
  36. Roeckner, E., G. Bäuml, L. Bonaventura, et al., 2003: The Atmospheric General Circulation Model ECHAM5, Part I: Model Description. Max-Planck-Institute for Meteorology, Rep. No. 349, Hamburg, Germany, 127 pp.Google Scholar
  37. Rong, X. Y., J. Li, H. M. Chen, et al., 2018: The CAMS Climate System Model and a basic evaluation of its climatology and climate variability simulation. J. Meteor. Res., 32: 839–861, doi: 10.1007/s13351-018-8058-x.CrossRefGoogle Scholar
  38. Sun, D.-Z., Y. Q. Yu, and T. Zhang, 2009: Tropical water vapor and cloud feedbacks in climate models: A further assessment using coupled simulations. J. Climate, 22: 1287–1304, doi: 10.1175/2008JCLI2267.1.CrossRefGoogle Scholar
  39. Sun, Y., F. Wang, and D.-Z. Sun, 2016: Weak ENSO asymmetry due to weak nonlinear air–sea interaction in CMIP5 climate models. Adv. Atmos. Sci., 33: 352–364, doi: 10.1007/s00376-015-5018-6.CrossRefGoogle Scholar
  40. Timmermann, A., S.-I. An, J.-S. Kug, et al., 2018: El Niño–Southern Oscillation complexity. Nature, 559: 535–545, doi: 10.10 38/s41586-018-0252-6.CrossRefGoogle Scholar
  41. Uppala, S. M., P. W. KÅllberg, A. J. Simmons, et al., 2005: The ERA-40 re-analysis. Quart. J. Roy. Meteor. Soc., 131: 2961–3012, doi: 10.1256/qj.04.176.CrossRefGoogle Scholar
  42. Wang, L., and L. Chen, 2016: Interannual variation of convectively-coupled equatorial waves and their association with environmental factors. Dyn. Atmos. Oceans, 76: 116–126, doi: 10.1016/j.dynatmoce.2016.10.004.CrossRefGoogle Scholar
  43. Wang, L., and L. Chen, 2017a: Effect of basic state on seasonal variation of convectively coupled Rossby wave. Dyn. Atmos. Oceans, 77: 54–63, doi: 10.1016/j.dynatmoce.2016.11.002.Google Scholar
  44. Wang, L., and L. Chen, 2017b: Interannual variation of the Asian–Pacific oscillation. Dyn. Atmos. Oceans, 77: 17–25, doi: 10.1016/j.dynatmoce.2016.10.009.Google Scholar
  45. Winton, M., 2000: A reformulated three-layer sea ice model. J. Atmos. Oceanic Technol., 17: 525–531, doi: 10.1175/1520-0426(2000)017<0525:ARTLSI>2.0.CO;2.CrossRefGoogle Scholar
  46. Xie, P. P., and P. A. Arkin, 1997: Global precipitation: A 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull. Amer. Meteor. Soc., 78: 2539–2558, doi: 10.1175/1520-0477(1997)078<2539:GP AYMA>2.0.CO;2.CrossRefGoogle Scholar
  47. Yu, L. S., X. Z. Jin, and R. A. Weller, 2008: Multidecade Global Flux Datasets from the Objectively Analyzed Air–Sea Fluxes (OAFlux) Project: Latent and Sensible Heat Fluxes, Ocean Evaporation, and Related Surface Meteorological Variables. OAFlux Project Technical Report (OA-2008-01), Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, 64 pp.Google Scholar
  48. Zhang, Y. C., W. B. Rossow, A. A. Lacis, et al., 2004: Calculation of radiative fluxes from the surface to top of atmosphere based on ISCCP and other global data sets: Refinements of the radiative transfer model and the input data. J. Geophys. Res. Atmos., 109, D19105, doi: 10.1029/2003JD004457.CrossRefGoogle Scholar
  49. Zheng, F., L. S. Feng, and J. Zhu, 2015: An incursion of offequatorial subsurface cold water and its role in triggering the “double dip” La Niña event of 2011. Adv. Atmos. Sci., 32: 731–742, doi: 10.1007/s00376-014-4080-9.CrossRefGoogle Scholar
  50. Zhou, T. J., B. Wu, and L. Dong, 2014: Advances in research of ENSO changes and the associated impacts on Asian–Pacific climate. Asia–Pacific J. Atmos. Sci., 50: 405–422, doi: 10.1007/s13143-014-0043-4.CrossRefGoogle Scholar

Copyright information

© The Chinese Meteorological Society and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Lijuan Hua
    • 1
  • Lin Chen
    • 3
    • 2
    Email author
  • Xinyao Rong
    • 1
  • Jian Li
    • 1
  • Guo Zhang
    • 1
  • Lu Wang
    • 3
    • 2
  1. 1.State Key Laboratory of Severe Weather, Chinese Academy of Meteorological SciencesChina Meteorological AdministrationBeijingChina
  2. 2.Key Laboratory of Meteorological Disaster, Ministry of Education/Joint International Research Laboratory of Climate and Environmental Change/Collaborative Innovation Center on Forecast and Evaluation of Meteorological DisastersNanjing University of Information Science & TechnologyNanjingChina
  3. 3.State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric PhysicsChinese Academy of SciencesBeijingChina

Personalised recommendations