Journal of Meteorological Research

, Volume 32, Issue 5, pp 744–757 | Cite as

Analysis of Paths and Sources of Moisture for the South China Rainfall during the Presummer Rainy Season of 1979–2014

  • Yangruixue Chen
  • Yali Luo
Special Collection on Weather and Climate under Complex Terrain and Variable Land Surfaces: Observations and Numerical Simulations


The paths and sources of moisture supplied to South China during two periods of the presummer rainy season (April–June) of 1979–2014, i.e., before and after the onset of the summer monsoon over the South China Sea (SCS), are investigated by using the Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model. During the premonsoon-onset period, the moisture transport trajectories are clustered into 6 groups, with four ocean-originating paths providing 83.9% and two continent-originating paths (originating over Lake Baikal and the Persian Gulf) contributing the remaining 16.1% of the total moisture. The two Pacific-originating paths, from the western Pacific Ocean and the East China Sea, combined account for about 46%, the SCS-originating path contributes about 24.3%, while the Bay of Bengal-originating path accounts for 13.6% of the total moisture over South China. The trajectories during the postmonsoon-onset period are clustered into 4 groups, with three southwesterly paths (from the Arabian Sea, the central Indian Ocean, and the western Indian Ocean, respectively) accounting for more than 76% and the sole Pacific-originating path accounting for 23.8% of the total moisture. The formation of the moisture transport trajectories is substantially affected by the topography, especially the Tibetan Plateau and the Indian and Indo–China Peninsulas. The SCS region contributes the most moisture during both periods (35.3% and 31.1%). The Pacific Ocean is ranked second during the former period (about 21.0%) but its contribution is reduced to 5.0% during the latter period, while the contribution from the Bay of Bengal and the Indian Ocean combined increases from 17.1% to 43.2%.

Key words

presummer rainy season South China the Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model water vapor path moisture source 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The ERA-Interim data was downloaded from The Lagrangian model named the Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) was obtained from


  1. Brimelow, J. C., and G. W. Reuter, 2005: Transport of atmospheric moisture during three extreme rainfall events over the Mackenzie River basin. J. Hydrometeorol., 6, 423–440, doi: 10.11 75/JHM430.1.CrossRefGoogle Scholar
  2. Brubaker, K. L., D. Entekhabi, and P. S. Eagleson, 1993: Estimation of continental precipitation recycling. J. Climate, 6, 1077–1089, doi: 10.1175/1520-0442(1993)006<1077:EOCPR >2.0.CO;2.CrossRefGoogle Scholar
  3. Chang, Y., J. H. He, Y. Y. Liu, et al.,2006: Features of moisture transport of in pre-summmer flood season of drought and flood years over South China. Plateau Meteor., 25, 1064–1070, doi: 10.3321/j.issn:1000-0534.2006.06.013. (in Chinese)Google Scholar
  4. Chen, X. C., Y. Xu, C. H. Xu, et al.,2014: Assessment of precipitation simulations in China by CMIP5 multi-models. Climatic Environ. Res., 10, 217–225, doi: 10.3969/j.issn.1673-1719. 2014.03.011. (in Chinese)Google Scholar
  5. Chi, Y. Z., J. H. He, and Z. W. Wu, 2005: Features analysis of the different precipitation periods in the pre-flood season in South China. J. Nanjing Inst. Meteor., 28, 163–171, doi: 10.3969/j. issn.1674-7097.2005.02.003. (in Chinese)Google Scholar
  6. Chow, K. C., H. W. Tong, and J. C. L. Chan, 2008: Water vapor sources associated with the early summer precipitation over China. Climate Dyn., 30, 497–517, doi: 10.1007/s00382-007-0301-6.CrossRefGoogle Scholar
  7. Dee, D. P., S. M. Uppala, A. J. Simmons, et al.,2011: The ERAInterim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553–597, doi: 10.1002/qj.828.CrossRefGoogle Scholar
  8. Ding, Y. H., 1992: Summer monsoon rainfalls in China. J. Meteor. Soc. Japan, 70, 373–396, doi: 10.2151/jmsj1965.70.1B_373.CrossRefGoogle Scholar
  9. Ding, Y. H., 1994: Monsoons over China. Kluwer Academic Publishers, Dordrecht, 419 pp.Google Scholar
  10. Ding, Y. H., and J. C. L. Chan, 2005: The East Asian summer monsoon: An overview. Meteor. Atmos. Phys., 89, 117–142, doi: 10.1007/s00703-005-0125-z.CrossRefGoogle Scholar
  11. Drumond, A., R. Nieto, L. Gimeno, et al.,2008: A Lagrangian identification of major sources of moisture over Central Brazil and La Plata Basin. J. Geophys. Res. Atmos., 113, D14128, doi: 10.1029/2007JD009547.CrossRefGoogle Scholar
  12. Drumond, A., R. Nieto, E. Hernandez, et al.,2011: A Lagrangian analysis of the variation in moisture sources related to drier and wetter conditions in regions around the Mediterranean Basin. Nat. Hazards Earth Syst. Sci., 11, 2307–2320, doi: 10.5194/nhess-11-2307-2011.CrossRefGoogle Scholar
  13. Eagleson, P. S., 1970: Dynamic Hydrology. McGraw-Hill, Inc., New York, 462 pp.Google Scholar
  14. Gaffney, S., 2004: Probabilistic curve-aligned clustering and prediction with mixture models. Ph. D. dissertation, Department of Computer Science, University of California, Irvine, 281 pp.Google Scholar
  15. Gaffney, S. J., A. W. Robertson, P. Smyth, et al.,2007: Probabilistic clustering of extratropical cyclones using regression mixture models. Climate Dyn., 29, 423–440, doi: 10.1007/s003 82-007-0235-z.CrossRefGoogle Scholar
  16. Gao, X. J., M. L. Wang, and F. Giorgi, 2013: Climate change over China in the 21st century as simulated by BCC_CSM1.1-RegCM4.0. Atmos. Ocean. Sci. Lett., 6, 381–386, doi: 10.3 878/j.issn.1674-2834.13.0029.CrossRefGoogle Scholar
  17. Gómez-Hernández, M., A. Drumond, L. Gimeno, et al.,2013: Variability of moisture sources in the Mediterranean region during the period 1980–2000. Water Resour. Res., 49, 6781–6794, doi: 10.1002/wrcr.20538.CrossRefGoogle Scholar
  18. Gustafsson, M., D. Rayner, and D. L. Chen, 2010: Extreme rainfall events in southern Sweden: Where does the moisture come from? Tellus, 62, 605–616, doi: 10.1111/j.1600-0870. 2010.00456.x.CrossRefGoogle Scholar
  19. Huang, S. S., 1986: Heavy Rainfall over Southern China in the Pre-Summer Rainy Season. Guangdong Science and Technology Press, Guangzhou, 244 pp. (in Chinese)Google Scholar
  20. Huang, Y. J., and X. P. Cui, 2015: Moisture sources of torrential rainfall events in the Sichuan Basin of China during summers of 2009–13. J. Hydrometeorol., 16, 1906–1917, doi: 10.1175/jhm-d-14-0220.1.CrossRefGoogle Scholar
  21. Izquierdo, R., A. Avila, and M. Alarcón, 2012: Trajectory statistical analysis of atmospheric transport patterns and trends in precipitation chemistry of a rural site in NE Spain in 1984–2009. Atmos. Environ., 61, 400–408, doi: 10.1016/j.atmosenv.2012. 07.060.CrossRefGoogle Scholar
  22. Jiang, Z. H., S. Jiang, Y. Shi, et al.,2017: Impact of moisture source variation on decadal-scale changes of precipitation in North China from 1951 to 2010. J. Geophys. Res. Atmos., 122, 600–613, doi: 10.1002/2016JD025795.CrossRefGoogle Scholar
  23. Li, X. Z., W. Zhou, and Y. Q. Chen, 2016: Detecting the origins of moisture over southeast China: Seasonal variation and heavy Rainfall. Adv. Atmos. Sci., 33, 319–329, doi: 10.1007/s00376-015-4197-5.CrossRefGoogle Scholar
  24. Liu, B. Q., C. W. Zhu, Y. Yuan, et al.,2016: Two types of interannual variability of South China Sea summer monsoon onset related to the SST anomalies before and after 1993/94. J. Climate, 29, 6957–6971, doi: 10.1175/JCLI-D-16-0065.1.CrossRefGoogle Scholar
  25. Liu, R. X., J. H. Sun, J. Wei, et al.,2016: Classification of persistent heavy rainfall events over South China and associated moisture source analysis. J. Meteor. Res., 30, 678–693, doi: 10.1007/s13351-016-6042-x.CrossRefGoogle Scholar
  26. Liu, Y. J. and Y. H. Ding, 2000: Evolution of the atmospheric stratification and mixed layer before and after monsoon onset over the South China Sea. Climatic Environ. Res., 5, 459–468, doi: 10.3969/j.issn.1006-9585.2000.04.011. (in Chinese)Google Scholar
  27. Liu, Y. J., Y. H. Ding, and Y. L. Song, 2005: The moisture transport and moisture budget over the South China Sea before and after the summer monsoon onset in 1998. J. Trop. Meteor., 21, 55–62, doi: 10.3969/j.issn.1004-4965.2005.01.006. (in Chinese)Google Scholar
  28. Luo, Y. L., H. Wang, R. H. Zhang, et al.,2013: Comparison of rainfall characteristics and convective properties of monsoon precipitation systems over South China and the Yangtze and Huai River Basin. J. Climate, 26, 110–132, doi: 10.1175/JCLI-D-12-00100.1.CrossRefGoogle Scholar
  29. Luo, Y. L., R. H. Zhang, Q. L. Wan, et al.,2017: The Southern China monsoon rainfall experiment (SCMREX). Bull. Amer. Meteor. Soc., 98, 999–1013, doi: 10.1175/BAMS-D-15-002 35.1.CrossRefGoogle Scholar
  30. Martius, O., H. Sodemann, H. Joos, et al.,2013: The role of upperlevel dynamics and surface processes for the Pakistan flood of July 2010. Quart. J. Roy. Meteor. Soc., 139, 1780–1797, doi: 10.1002/qj.2082.CrossRefGoogle Scholar
  31. Nieto, R., L. Gimeno, and R. M. Trigo, 2006: A Lagrangian identification of major sources of Sahel moisture. Geophys. Res. Lett., 33, L18707, doi: 10.1029/2006GL027232.CrossRefGoogle Scholar
  32. Pfahl, S., and H. Wernli, 2008: Air parcel trajectory analysis of stable isotopes in water vapor in the eastern Mediterranean. J. Geophys. Res. Atmos., 113, D20104, doi: 10.1029/2008JD009 839.CrossRefGoogle Scholar
  33. Salih, A. A. M., Q. Zhang, and M. Tjernström, 2015: Lagrangian tracing of Sahelian Sudan moisture sources. J. Geophys. Res. Atmos., 120, 6793–6808, doi: 10.1002/2015JD023238.CrossRefGoogle Scholar
  34. Sodemann, H., C. Schwierz, and H. Wernli, 2008: Interannual variability of Greenland winter precipitation sources: Lagrangian moisture diagnostic and North Atlantic Oscillation influence. J. Geophys. Res. Atmos., 113, D03107, doi: 10.1029/2007JD008503.Google Scholar
  35. Sodemann, H., and E. Zubler, 2009: Seasonal and inter-annual variability of the moisture sources for Alpine precipitation during 1995–2002. Int. J. Climatol., 30, 947–961, doi: 10.10 02/joc.1932.Google Scholar
  36. Stein, A. F., R. R. Draxler, G. D. Rolph, et al.,2015: NOAA’s HYSPLIT atmospheric transport and dispersion modeling system. Bull. Amer. Meteor. Soc., 96, 2059–2077, doi: 10.11 75/BAMS-D-14-00110.1.CrossRefGoogle Scholar
  37. Sun, B., and H. J. Wang, 2014: Moisture sources of semiarid grassland in China using the Lagrangian particle model FLEXPART. J. Climate, 27, 2457–2474, doi: 10.1175/JCLID-13-00517.1.CrossRefGoogle Scholar
  38. Sun, B., and H. J. Wang, 2015: Analysis of the major atmospheric moisture sources affecting three sub-regions of East China. Int. J. Climatol., 35, 2243–2257, doi: 10.1002/joc.4145.CrossRefGoogle Scholar
  39. Sun, J. H., H. J. Wang, J. Wei, et al.,2016: The sources and transportation of water vapor in persistent heavy rainfall events in the Yangtze–Huaihe River valley. Acta Meteor. Sinica, 74, 542–555, doi: 10.11676/qxxb2016.047. (in Chinese)Google Scholar
  40. Tian, H., P. W. Guo, and W. S. Lu, 2004: Characteristics of vapor inflow corridors related to summer rainfall in China and impact factors. J. Trop. Meteor., 20, 401–408, doi: 10.3969/j.issn.1004-4965.2004.04.008. (in Chinese)Google Scholar
  41. Trenberth, K. E., 1999: Atmospheric moisture recycling: Role of advection and local evaporation. J. Climate, 12, 1368–1381, doi: 10.1175/1520-0442(1999)012<1368:AMRROA>2.0.CO; 2.CrossRefGoogle Scholar
  42. Trenberth, K. E., A. G. Dai, R. M. Rasmussen, et al.,2003: The changing character of precipitation. Bull. Amer. Meteor. Soc., 84, 1205–1216, doi: 10.1175/BAMS-84-9-1205.CrossRefGoogle Scholar
  43. Wang, J., J. H. He, X. F. Liu, et al.,2009: Interannual variability of the Meiyu onset over Yangtze–Huaihe River valley and analyses of its previous strong influence signal. Chinese Sci. Bull., 54, 687–695, doi: 10.1007/s11434-008-0534-8.CrossRefGoogle Scholar
  44. Wu, J., and X. J. Gao, 2013: A gridded daily observation dataset over China region and comparison with the other datasets. Chinese J. Geophys., 56, 1102–1111, doi: 10.6038/cjg2013 0406. (in Chinese)Google Scholar
  45. Xie, A., Y. S. Chung, X. Liu, et al.,1998: The interannual variations of the summer monsoon onset over the South China Sea. Theor. Appl. Climatol., 59, 201–213, doi: 10.1007/s00 7040050024.CrossRefGoogle Scholar
  46. Zheng, B., J. Y. Liang, A. L. Lin, et al.,2006: Frontal rain and summer monsoon rain during pre-rainy season in South China. Part I: Determination of the division dates. Chinese J. Atmos. Sci., 30, 1207–1216, doi: 10.3878/j.issn.1006-9895. 2006.06.15. (in Chinese)Google Scholar
  47. Zhou, T. J., and R. C. Yu, 2005: Atmospheric water vapor transport associated with typical anomalous summer rainfall patterns in China. J. Geophys. Res. Atmos., 110, D08104, doi: 10.1029/2004JD005413.Google Scholar

Copyright information

© The Chinese Meteorological Society and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.State Key Laboratory of Severe WeatherChinese Academy of Meteorological SciencesBeijingChina
  2. 2.University of Chinese Academy of SciencesBeijingChina
  3. 3.Collaborative Innovation Center on Forecast and Evaluation of Meteorological DisastersNanjing University of Information Science & TechnologyNanjingChina

Personalised recommendations