Advertisement

Journal of Meteorological Research

, Volume 32, Issue 5, pp 707–722 | Cite as

Estimation of the Aerosol Radiative Effect over the Tibetan Plateau Based on the Latest CALIPSO Product

  • Rui Jia
  • Yuzhi Liu
  • Shan Hua
  • Qingzhe Zhu
  • Tianbin Shao
Special Collection on Aerosol-Cloud-Radiation Interactions
  • 17 Downloads

Abstract

Based on the CALIPSO (Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observation) Version 4.10 products released on 8 November 2016, the Level 2 (L2) aerosol product over the Tibetan Plateau (TP) is evaluated and the aerosol radiative effect is also estimated in this study. As there are still some missing aerosol data points in the daytime CALIPSO Version 4.10 L2 product, this study re-calculated the aerosol extinction coefficient to explore the aerosol radiative effect over the TP based on the CALIPSO Level 1 (L1) and CloudSat 2B-CLDCLASS-LIDAR products. The energy budget estimation obtained by using the AODs (aerosol optical depths) from calculated aerosol extinction coefficient as an input to a radiative transfer model shows better agreement with the Earth’s Radiant Energy System (CERES) and CloudSat 2B-FLXHR-LIDAR observations than that with the input of AODs from aerosol extinction coefficient from CALIPSO Version 4.10 L2 product. The radiative effect and heating rate of aerosols over the TP are further simulated by using the calculated aerosol extinction coefficient. The dust aerosols may heat the atmosphere by retaining the energy in the layer. The instantaneous heating rate can be as high as 5.5 K day–1 depending on the density of the dust layers. Overall, the dust aerosols significantly affect the radiative energy budget and thermodynamic structure of the air over the TP, mainly by altering the shortwave radiation budget. The significant influence of dust aerosols over the TP on the radiation budget may have important implications for investigating the atmospheric circulation and future regional and global climate.

Key words

aerosol radiative effect Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) Version 4.10 product Tibetan Plateau 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

The CALIPSO, CloudSat, and CERES data were obtained from the NASA Langley Research Center Atmospheric Sciences Data Center, and the authors gratefully acknowledge their efforts in making these data available online. We also gratefully acknowledge Q. Fu and K. N. Liou for providing the Fu–Liou model.

References

  1. Ackerman, A. S., O. B. Toon, D. E. Stevens, et al.,2000: Reduction of tropical cloudiness by soot. Science, 288, 1042–1047, doi: 10.1126/science.288.5468.1042.CrossRefGoogle Scholar
  2. Adams, A. M., J. M. Prospero, and C. D. Zhang, 2012: CALIPSOderived three-dimensional structure of aerosol over the Atlantic basin and adjacent continents. J. Climate, 25, 6862–6879, doi: 10.1175/JCLI-D-11-00672.1.CrossRefGoogle Scholar
  3. Albrecht, B. A., 1989: Aerosols, cloud microphysics, and fractional cloudiness. Science, 245, 1227–1230, doi: 10.1126/science. 245.4923.1227.CrossRefGoogle Scholar
  4. Charlson, R. J., S. E. Schwartz, J. M. Hales, et al.,1992: Climate forcing by anthropogenic aerosols. Science, 255, 423–430, doi: 10.1126/science.255.5043.423.CrossRefGoogle Scholar
  5. Chen, B., J. Huang, P. Minnis, et al.,2010: Detection of dust aerosol by combining CALIPSO active lidar and passive IIR measurements. Atmos. Chem. Phys., 10, 4241–4251, doi: 10.5194/acp-10-4241-2010.CrossRefGoogle Scholar
  6. Chen, B., P. Zhang, B. D. Zhang, et al.,2014: An overview of passive and active dust detection methods using satellite measurements. J. Meteor. Res., 28, 1029–1040, doi: 10.1007/s13351-014-4032-4.CrossRefGoogle Scholar
  7. Chen, S. Y., J. P. Huang, C. Zhao, et al.,2013: Modeling the transport and radiative forcing of Taklimakan dust over the Tibetan Plateau: A case study in the summer of 2006. J. Geophys. Res. Atmos., 118, 797–812, doi: 10.1002/jgrd.50122.CrossRefGoogle Scholar
  8. Choi, I. J., T. Iguchi, S. W. Kim, et al.,2014: The effect of aerosol representation on cloud microphysical properties in Northeast Asia. Meteor. Atmos. Phys., 123, 181–194, doi: 10.1007/s00703-013-0288-y.CrossRefGoogle Scholar
  9. D'Almeida, G. A., P. Koepke, and E. P. Shettle, 2005: Atmospheric aerosols: Global climatology and radiative characteristics. J. Med. Microbiol., 54, 55–61.CrossRefGoogle Scholar
  10. Fu, Q., and K. N. Liou, 1992: On the correlated k-distribution method for radiative transfer in nonhomogeneous atmospheres. J. Atmos. Sci., 49, 2139–2156, doi: 10.1175/1520-0469(1992)049<2139:OTCDMF>2.0.CO;2.CrossRefGoogle Scholar
  11. Fu, Q., and K. N. Liou, 1993: Parameterization of the radiative properties of cirrus clouds. J. Atmos. Sci., 50, 2008–2025, doi: 10.1175/1520-0469(1993)050<2008:POTRPO>2.0.CO;2.CrossRefGoogle Scholar
  12. Garnier, A., J. Pelon, M. A. Vaughan, et al.,2015: Lidar multiple scattering factors inferred from CALIPSO lidar and IIR retrievals of semi-transparent cirrus cloud optical depths over oceans. Atmos. Meas. Tech., 8, 2759–2774, doi: 10.5194/amt-8-2759-2015.CrossRefGoogle Scholar
  13. Ge, J. M., J. P. Huang, C. P. Xu, et al.,2014: Characteristics of Taklimakan dust emission and distribution: A satellite and reanalysis field perspective. J. Geophys. Res. Atmos., 119, 11772–11783, doi: 10.1002/2014JD022280.CrossRefGoogle Scholar
  14. Guo, J. P., X. Y. Zhang, Y. R. Wu, et al.,2011: Spatiotemporal variation trends of satellite-based aerosol optical depth in China during 1980–2008. Atmos. Environ., 45, 6802–6811, doi: 10.1016/j.atmosenv.2011.03.068.CrossRefGoogle Scholar
  15. Guo, J. P., H. Liu, F. Wang, et al.,2016: Three-dimensional structure of aerosol in China: A perspective from multi-satellite observations. Atmos. Res., 178–179, 580–589, doi: 10.1016/j.atmosres.2016.05.010.CrossRefGoogle Scholar
  16. Henderson, D. S., T. L’Ecuyer, G. Stephens, et al.,2013: A multisensor perspective on the radiative impacts of clouds and aerosols. J. Appl. Meteor. Climatol., 52, 853–871, doi: 10.1175/JAMC-D-12-025.1.CrossRefGoogle Scholar
  17. Hess, M., P. Koepke, and I. Schult, 1998: Optical properties of aerosols and clouds: The software package OPAC. Bull. Amer. Meteor. Soc., 79, 831–844, doi: 10.1175/1520-0477(1998)079 <0831:OPOAAC>2.0.CO;2.CrossRefGoogle Scholar
  18. Huang, J., Q. Fu, J. Su, et al.,2009: Taklimakan dust aerosol radiative heating derived from CALIPSO observations using the Fu–Liou radiation model with CERES constraints. Atmos. Chem. Phys., 9, 4011–4021, doi: 10.5194/acp-9-4011-2009.CrossRefGoogle Scholar
  19. Huang, J. P., P. Minnis, Y. H. Yi, et al.,2007: Summer dust aerosols detected from CALIPSO over the Tibetan Plateau. Geophys. Res. Lett., 34, L18805, doi: 10.1029/2007GL029938.CrossRefGoogle Scholar
  20. Huang, J. P., P. Minnis, B. Chen, et al.,2008: Long-range transport and vertical structure of Asian dust from CALIPSO and surface measurements during PACDEX. J. Geophys. Res. Atmos., 113, D23212, doi: 10.1029/2008JD010620.CrossRefGoogle Scholar
  21. Huang, J. P., T. H. Wang, W. C. Wang, et al.,2014: Climate effects of dust aerosols over East Asian arid and semiarid regions. J. Geophys. Res. Atmos., 119, 11398–11416, doi: 10.1002/2014JD021796.CrossRefGoogle Scholar
  22. Jia, R., Y. Z. Liu, B. Chen, et al.,2015: Source and transportation of summer dust over the Tibetan Plateau. Atmos. Environ., 123, 210–219, doi: 10.1016/j.atmosenv.2015.10.038.CrossRefGoogle Scholar
  23. Kim, D.-H., B. J. Sohn, T. Nakajima, et al.,2005: Aerosol radiative forcing over East Asia determined from ground-based solar radiation measurements. J. Geophys. Res. Atmos., 110, D10S22, doi: 10.1029/2004JD004678.Google Scholar
  24. Kovalev, V. A., W. M. Hao, and C. Wold, 2007: Determination of the particulate extinction-coefficient profile and the columnintegrated lidar ratios using the backscatter-coefficient and optical-depth profiles. Appl. Opt., 46, 8627–8634, doi: 10.1364/AO.46.008627.CrossRefGoogle Scholar
  25. Kuang, Y., C. S. Zhao, J. C. Tao, et al.,2015: Diurnal variations of aerosol optical properties in the North China Plain and their influences on the estimates of direct aerosol radiative effect. Atmos. Chem. Phys., 15, 5761–5772, doi: 10.5194/acp-15-5761-2015.CrossRefGoogle Scholar
  26. Kuhlmann, J., and J. Quaas, 2010: How can aerosols affect the Asian summer monsoon? Assessment during three consecutive pre-monsoon seasons from CALIPSO satellite data. Atmos. Chem. Phys., 10, 4673–4688, doi: 10.5194/acp-10-4673-2010.CrossRefGoogle Scholar
  27. Lau, K. M., M. K. Kim, and K. M. Kim, 2006: Asian summer monsoon anomalies induced by aerosol direct forcing: The role of the Tibetan Plateau. Climate Dyn., 26, 855–864, doi: 10.1007/s00382-006-0114-z.CrossRefGoogle Scholar
  28. Lau, W. K. M., 2016: The aerosol–monsoon climate system of Asia: A new paradigm. J. Meteor. Res., 30, 1–11, doi: 10.1007/s13351-015-5999-1.CrossRefGoogle Scholar
  29. Lau, W. K. M., and K.-M. Kim, 2010: Fingerprinting the impacts of aerosols on long-term trends of the Indian summer monsoon regional rainfall. Geophys. Res. Lett., 37, L16705, doi: 10.1029/2010GL043255.CrossRefGoogle Scholar
  30. Lau, W. K. M., M.-K. Kim, K.-M. Kim, et al.,2010: Enhanced surface warming and accelerated snow melt in the Himalayas and Tibetan Plateau induced by absorbing aerosols. Environ. Res. Lett., 5, 025204, doi: 10.1088/1748-9326/5/2/025204.CrossRefGoogle Scholar
  31. L’Ecuyer, T. S., N. B. Wood, T. Haladay, et al.,2008: Impact of clouds on atmospheric heating based on the R04 CloudSat fluxes and heating rates data set. J. Geophys. Res. Atmos., 113, D00A15, doi: 10.1029/2008JD009951.Google Scholar
  32. Li, H. J., W. Zheng, and Q. Gong, 2013: An analysis on detection of a sand–dust weather event over Taklimakan Desert based on polarization micro-pulse lidar. Desert Oasis Meteor., 7, 1–5. (in Chinese)Google Scholar
  33. Li, Z. Q., J. P. Guo, A. J. Ding, et al.,2017: Aerosol and boundary-layer interactions and impact on air quality. Natl. Sci. Rev., 4, 810–833, doi: 10.1093/nsr/nwx117.CrossRefGoogle Scholar
  34. Liu, Y., Y. Sato, R. Jia, et al.,2015: Modeling study on the transport of summer dust and anthropogenic aerosols over the Tibetan Plateau. Atmos. Chem. Phys., 15, 12581–12594, doi: 10.5194/acp-15-12581-2015.CrossRefGoogle Scholar
  35. Liu, Z. Y., D. Liu, J. P. Huang, et al.,2008a: Airborne dust distributions over the Tibetan Plateau and surrounding areas derived from the first year of CALIPSO lidar observations. Atmos. Chem. Phys., 8, 5045–5060, doi: 10.5194/acp-8-5045-2008.CrossRefGoogle Scholar
  36. Liu, Z. Y., A. Omar, M. Vaughan, et al.,2008b: CALIPSO lidar observations of the optical properties of Saharan dust: A case study of long-range transport. J. Geophys. Res. Atmos., 113, D07207, doi: 10.1029/2007JD008878.Google Scholar
  37. Müller, D., K. Franke, A. Ansmann, et al.,2003: Indo-Asian pollution during INDOEX: Microphysical particle properties and single-scattering albedo inferred from multiwavelength lidar observations. J. Geophys. Res. Atmos., 108, 4600, doi: 10.1029/2003JD003538.CrossRefGoogle Scholar
  38. Mukai, M., T. Nakajima, and T. Takemura, 2008: A study of anthropogenic impacts of the radiation budget and the cloud field in East Asia based on model simulations with GCM. J. Geophys. Res. Atmos., 113, D12211, doi: 10.1029/2007JD 009325.CrossRefGoogle Scholar
  39. Nakajima, T., S. C. Yoon, V. Ramanathan, et al.,2007: Overview of the Atmospheric Brown Cloud East Asian Regional Experiment 2005 and a study of the aerosol direct radiative forcing in East Asia. J. Geophys. Res. Atmos., 112, D24S91, doi: 10.1029/2007JD009009.CrossRefGoogle Scholar
  40. Omar, A. H., D. M. Winker, M. A. Vaughan, et al.,2009: The CALIPSO automated aerosol classification and lidar ratio selection algorithm. J. Atmos. Oceanic Technol., 26, 1994–2014, doi: 10.1175/2009JTECHA1231.1.CrossRefGoogle Scholar
  41. Omar, A. H., J. L. Tackett, M. A. Vaughan, et al.,2016: Enhancements to the CALIOP aerosol subtyping and lidar ratio selection algorithms for level II Version 4. AGU Fall Meeting, San Francisco, 12–1. December, American Geophysical Union.Google Scholar
  42. Qian, Y., M. G. Flanner, L. R. Leung, et al.,2011: Sensitivity studies on the impacts of Tibetan Plateau snowpack pollution on the Asian hydrological cycle and monsoon climate. Atmos. Chem. Phys., 11, 1929–1948, doi: 10.5194/acp-11-1929-2011.CrossRefGoogle Scholar
  43. Qian, Y. F., Y. Zhang, Y. Y. Huang, et al.,2004: The effects of the thermal anomalies over the Tibetan Plateau and its vicinities on climate variability in China. Adv. Atmos. Sci., 21, 369–381, doi: 10.1007/BF02915565.CrossRefGoogle Scholar
  44. Ramanathan, V., M. V. Ramana, G. Roberts, et al.,2007: Warming trends in Asia amplified by brown cloud solar absorption. Nature, 448, 575–578, doi: 10.1038/nature06019.CrossRefGoogle Scholar
  45. Rose, F. G., and T. P. Charlock, 2002: New Fu–Liou code tested with ARM Raman lidar and CERES in pre-CALIPSO sensitivity study. 11th Conference on Atmospheric Radiation, Ogden, Utah, USA, 7 June, Amer. Meteor. Soc.Google Scholar
  46. Rosenfeld, D., S. Sherwood, R. Wood, et al.,2014: Climate effects of aerosol–cloud interactions. Science, 343, 379–380, doi: 10.1126/science.1247490.CrossRefGoogle Scholar
  47. Sassen, K., 1991: The polarization lidar technique for cloud research: A review and current assessment. Bull. Amer. Meteor. Soc., 72, 1848–1866, doi: 10.1175/1520-0477(1991)2.0. co;2.CrossRefGoogle Scholar
  48. Satheesh, S. K., V. Ramanathan, X. Li-Jones, et al.,1999: A model for the natural and anthropogenic aerosols over the tropical Indian Ocean derived from Indian Ocean Experiment data. J. Geophys. Res. Atmos., 104, 27421–27440, doi: 10.1029/1999JD900478.CrossRefGoogle Scholar
  49. Satheesh, S. K., V. Vinoj, S. S. Babu, et al.,2009: Vertical distribution of aerosols over the east coast of India inferred from airborne LIDAR measurements. Ann. Geophys., 27, 4157–4169, doi: 10.5194/angeo-27-4157-2009.CrossRefGoogle Scholar
  50. Seiki, T., and T. Nakajima, 2014: Aerosol effects of the condensation process on a convective cloud simulation. J. Atmos. Sci., 71, 833–853, doi: 10.1175/JAS-D-12-0195.1.CrossRefGoogle Scholar
  51. Sekiguchi, M., T. Nakajima, K. Suzuki, et al.,2003: A study of the direct and indirect effects of aerosols using global satellite data sets of aerosol and cloud parameters. J. Geophys. Res. Atmos., 108, 4699, doi: 10.1029/2002JD003359.CrossRefGoogle Scholar
  52. Shen, L. L., L. F. Sheng, and J. J. Chen, 2010: Preliminary analysis of the spatial distribution of the dust aerosol in a heavy dust storm. J. Desert Res., 30, 1483–1490. (in Chinese)Google Scholar
  53. Su, J., J. P. Huang, Q. Fu, et al.,2008: Estimation of Asian dust aerosol effect on cloud radiation forcing using Fu–Liou radiative model and CERES measurements. Atmos. Chem. Phys., 8, 2763–2771, doi: 10.5194/acp-8-2763-2008.CrossRefGoogle Scholar
  54. Takamura, T., N. Sugimoto, A. Shimizu, et al.,2007: Aerosol radiative characteristics at Gosan, Korea, during the Atmospheric Brown Cloud East Asian Regional Experiment 2005. J. Geophys. Res. Atmos., 112, D22S36, doi: 10.1029/2007JD008506.CrossRefGoogle Scholar
  55. Tegen, I., A. A. Lacis, and I. Fung, 1996: The influence on climate forcing of mineral aerosols from disturbed soils. Nature, 380, 419–422, doi: 10.1038/380419a0.CrossRefGoogle Scholar
  56. Toth, T. D., J. L. Zhang, J. R. Campbell, et al.,2016: Temporal variability of aerosol optical thickness vertical distribution observed from CALIOP. J. Geophys. Res. Atmos., 121, 9117–9139, doi: 10.1002/2015JD024668.CrossRefGoogle Scholar
  57. Twomey, S., 1977: The influence of pollution on the shortwave albedo of clouds. J. Atmos. Sci., 34, 1149–1152, doi: 10.1175/1520-0469(1977)034<1149:TIOPOT>2.0.CO;2.CrossRefGoogle Scholar
  58. Uno, I., H. Amano, S. Emori, et al.,2001: Trans-Pacific yellow sand transport observed in April 1998. A numerical simulation. J. Geophys. Res. Atmos., 106, 18331–18344, doi: 10.1029/2000JD900748.CrossRefGoogle Scholar
  59. Wang, W. C., J. P. Huang, T. Zhou, et al.,2013: Estimation of radiative effect of a heavy dust storm over northwest China using Fu–Liou model and ground measurements. J. Quant. Spectrosc. Radiat. Transf., 122, 114–126, doi: 10.1016/j.jqsrt.2012.10.018.CrossRefGoogle Scholar
  60. Winker, D. M., M. A. Vaughan, A. Omar, et al.,2009: Overview of the CALIPSO mission and CALIOP data processing algorithms. J. Atmos. Oceanic Technol., 26, 2310–2323, doi: 10.1175/2009jtecha1281.1.CrossRefGoogle Scholar
  61. Wonsick, M. M., R. T. Pinker, and Y. Ma, 2014: Investigation of the “elevated heat pump” hypothesis of the Asian monsoon using satellite observations. Atmos. Chem. Phys., 14, 8749–8761, doi: 10.5194/acp-14-8749-2014.CrossRefGoogle Scholar
  62. Wu, G. X., X. Liu, Q. Zhang, et al.,2002: Progresses in the study of the climate impacts of the elevated heating over the Tibetan Plateau. Climatic Environ. Res., 7, 184–201. (in Chinese)Google Scholar
  63. Wu, G. X., J. Y. Mao, A. M. Duan, et al.,2006: Current progresses in study of impacts of the Tibetan Plateau on Asian summer climate. Acta Meteor. Sinica, 20, 144–158.Google Scholar
  64. Xia, X. G., P. C. Wang, Y. S. Wang, et al.,2008: Aerosol optical depth over the Tibetan Plateau and its relation to aerosols over the Taklimakan Desert. Geophys. Res. Lett., 35, L16804, doi: 10.1029/2008GL034981.CrossRefGoogle Scholar
  65. Yang, K., Y.-Y. Chen, and J. Qin, 2009: Some practical notes on the land surface modeling in the Tibetan Plateau. Hydrol. Earth Syst. Sci., 13, 687–701, doi: 10.5194/hess-13-687-2009.CrossRefGoogle Scholar
  66. Yang, W. Y., D. Z. Ye, and G. X. Wu, 1992: The influence of the Tibetan Plateau on the thermal and circulation fields over East Asia in summer. II: Main features of the local circulation fields and the large-scale vertical circulation fields. Chinese J. Atmos. Sci., 16, 287–301. (in Chinese)Google Scholar
  67. Yasunari, T. J., P. Bonasoni, P. Laj, et al.,2010: Estimated impact of black carbon deposition during pre-monsoon season from Nepal Climate Observatory-Pyramid data and snow albedo changes over Himalayan glaciers. Atmos. Chem. Phys., 10, 6603–6615, doi: 10.5194/acp-10-6603-2010.CrossRefGoogle Scholar
  68. Young, S. A., and M. A. Vaughan, 2009: The retrieval of profiles of particulate extinction from Cloud–Aerosol Lidar Infrared Pathfinder Satellite Observations (CALIPSO) data: Algorithm description. J. Atmos. Oceanic Technol., 26, 1105–1119, doi: 10.1175/2008JTECHA1221.1.CrossRefGoogle Scholar
  69. Zhang, H., J. H. Ma, and Y. F. Zheng, 2010: Modeling study of the global distribution of radiative forcing by dust aerosol. Acta Meteor. Sinica, 24, 558–570.Google Scholar
  70. Zhou, L. B., J. H. Zhu, H. Zou, et al.,2013: Atmospheric moisture distribution and transport over the Tibetan Plateau and the impacts of the South Asian summer monsoon. Acta Meteor. Sinica, 27, 819–831, doi: 10.1007/s13351-013-0603-z.CrossRefGoogle Scholar
  71. Zhu, Y. X., Y. H. Ding, and H. G. Xu, 2008: Decadal relationship between atmospheric heat source and winter–spring snow cover over the Tibetan Plateau and rainfall in East China. Acta. Meteor. Sinica, 22, 303–316.Google Scholar

Copyright information

© The Chinese Meteorological Society and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Rui Jia
    • 1
  • Yuzhi Liu
    • 1
  • Shan Hua
    • 1
  • Qingzhe Zhu
    • 1
  • Tianbin Shao
    • 1
  1. 1.Key Laboratory for Semi-Arid Climate Change of the Ministry of Education, College of Atmospheric SciencesLanzhou UniversityLanzhouChina

Personalised recommendations