Journal of Meteorological Research

, Volume 32, Issue 6, pp 839–861 | Cite as

The CAMS Climate System Model and a Basic Evaluation of Its Climatology and Climate Variability Simulation

  • Xinyao Rong
  • Jian LiEmail author
  • Haoming Chen
  • Yufei Xin
  • Jingzhi Su
  • Lijuan Hua
  • Tianjun Zhou
  • Yanjun Qi
  • Zhengqiu Zhang
  • Guo Zhang
  • Jianduo Li
Special Collection on CAMS-CSM


A new coupled climate system model (CSM) has been developed at the Chinese Academy of Meteorological Sciences (CAMS) by employing several state-of-the-art component models. The coupled CAMS-CSM consists of the modified atmospheric model [ECmwf-HAMburg (ECHAM5)], ocean model [Modular Ocean Model (MOM4)], sea ice model [Sea Ice Simulator (SIS)], and land surface model [Common Land Model (CoLM)]. A detailed model description is presented and both the pre-industrial and “historical” simulations are preliminarily evaluated in this study. The model can reproduce the climatological mean states and seasonal cycles of the major climate system quantities, including the sea surface temperature, precipitation, sea ice extent, and the equatorial thermocline. The major climate variability modes are also reasonably captured by the CAMS-CSM, such as the Madden–Julian Oscillation (MJO), El Niño–Southern Oscillation (ENSO), East Asian Summer Monsoon (EASM), and Pacific Decadal Oscillation (PDO). The model shows a promising ability to simulate the EASM variability and the ENSO–EASM relationship. Some biases still exist, such as the false double-intertropical convergence zone (ITCZ) in the annual mean precipitation field, the overestimated ENSO amplitude, and the weakened Bjerknes feedback associated with ENSO; and thus the CAMS-CSM needs further improvements.

Key words

CAMS-CSM climate system model climate variability model evaluation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adler, R. F., G. J. Huffman, A. Chang, et al., 2003: The version-2 global precipitation climatology Project (GPCP) monthly precipitation analysis (1979–present). J. Hydrometeorol., 4, 1147–1167, doi: 10.1175/1525-7541(2003)004<1147:TVGPCP> 2.0.CO;2.CrossRefGoogle Scholar
  2. Bellenger, H., E. Guilyardi, J. Leloup, et al., 2014: ENSO representation in climate models: From CMIP3 to CMIP5. Climate Dyn., 42, 1999–2018, doi: 10.1007/s00382-013-1783-z.CrossRefGoogle Scholar
  3. Bonan, G. B., 1996: A Land Surface Model (LSM Version 1.0) for Ecological, Hydrological, and Atmospheric Studies: Technical Description and User’s Guide. NCAR Technical Note NCAR/TN-417+STR, Boulder, Colorado, National Center for Atmospheric Research, doi: 10.5065/D6DF6P5X.Google Scholar
  4. Chen, L., and O. W. Frauenfeld, 2014: Surface air temperature changes over the twentieth and twenty-first centuries in China simulated by 20 CMIP5 models. J. Climate, 27, 3920–3937, doi: 10.1175/JCLI-D-13-00465.1.CrossRefGoogle Scholar
  5. Codron, F., and R. Sadourny, 2002: Saturation limiters for water vapour advection schemes: Impact on orographic precipitation. Tellus A, 54, 338–349, doi: 10.3402/tellusa.v54i4.12148.CrossRefGoogle Scholar
  6. Dai, Y. J., and Q. C. Zeng, 1997: A land surface model (IAP94) for climate studies. Part I: Formulation and validation in offline experiments. Adv. Atmos. Sci., 14, 433–460, doi: 10.1007/s00376-997-0063-4.Google Scholar
  7. Dai, Y. J., X. B. Zeng, R. E. Dickinson, et al., 2003: The common land model. Bull. Amer. Meteor. Soc., 84, 1013–1024, doi: 10.1175/BAMS-84-8-1013.CrossRefGoogle Scholar
  8. Dai, Y. J., R. E. Dickinson, and Y. P. Wang, 2004: A two-big-leaf model for canopy temperature, photosynthesis, and stomatal conductance. J. Climate, 17, 2281–2299, doi: 10.1175/1520-0442(2004)017<2281:ATMFCT>2.0.CO;2.CrossRefGoogle Scholar
  9. Dee, D. P., S. M. Uppala, A. J. Simmons, et al., 2011: The ERAInterim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553–597, doi: 10.1002/qj.828.CrossRefGoogle Scholar
  10. Dickinson, R. E., A. Henderson-Sellers, and P. J. Kennedy, 1993: Biosphere–Atmosphere Transfer Scheme (BATS) version 1e as Coupled to the NCAR Community Climate Model. NCAR Technical Note NCAR/TN-387+STR, Boulder, Colorado, National Center for Atmospheric Research, 72 pp, doi: 10.5065/D67W6959Google Scholar
  11. Dunne, J. P., J. G. John, A. J. Adcroft, et al., 2012: GFDL’s ESM2 global coupled climate–carbon earth system models. Part I: Physical formulation and baseline simulation characteristics. J. Climate, 25, 6646–6665, doi: 10.1175/JCLI-D-11-00560.1.Google Scholar
  12. Eyring, V., S. Bony, G. A. Meehl, et al., 2016: Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Devel., 9, 1937–1958, doi: 10.5194/gmdd-8-10539-2015.CrossRefGoogle Scholar
  13. Fetterer, F., K. Knowles, W. Meier, et al., 2017: Sea Ice Index, Version 3 (updated daily). Boulder, Colorado, National Snow and Ice Data Center, doi: 10.7265/N5K072F8. [Accessed on 7 August 2018]Google Scholar
  14. Giorgetta, M. A., J. Jungclaus, C. H. Reick, et al., 2013: Climate and carbon cycle changes from 1850 to 2100 in MPI-ESM simulations for the Coupled Model Intercomparison Project phase 5. J. Adv. Model. Earth Syst., 5, 572–597, doi: 10.1002/jame.20038.CrossRefGoogle Scholar
  15. Gong, H. N., L. Wang, W. Chen, et al., 2014: The climatology and interannual variability of the East Asian winter monsoon in CMIP5 models. J. Climate, 27, 1659–1678, doi: 10.1175/JCLI-D-13-00039.1.CrossRefGoogle Scholar
  16. Griffies, S. M., M. J. Harrison, P. C. Pacanowski, et al., 2004: A Technical Guide to MOM4. GFDL Ocean Group Technical Report NO. 5, Princeton, NJ, NOAA/Geophysical Fluid Dynamics Laboratory, 339 pp.Google Scholar
  17. Hagemann, S., and L. Dümenil, 1997: A parametrization of the lateral waterflow for the global scale. Climate Dyn., 14, 17–31, doi: 10.1007/s003820050205.CrossRefGoogle Scholar
  18. Hartmann, D. L., M. L. Michelsen, and S. A. Klein, 1992: Seasonal variations of tropical intraseasonal oscillations: A 20–25-day oscillation in the western Pacific. J. Atmos. Sci., 49, 1277–1289, doi: 10.1175/1520-0469(1992)049<1277:SVOTI O>2.0.CO;2.CrossRefGoogle Scholar
  19. Henderson-Sellers, A., A. J. Pitman, P. K. Love, et al., 1995: The project for intercomparison of land surface parameterization schemes (PILPS): Phases 2 and 3. Bull. Amer. Meteor. Soc., 76, 489–504, doi: 10.1175/1520-0477(1995)076<0489:TPFIOL> 2.0.CO;2.CrossRefGoogle Scholar
  20. Hsu, H. H., and C. H. Weng, 2001: Northwestward propagation of the intraseasonal oscillation in the western North Pacific during the boreal summer: Structure and mechanism. J. Climate, 14, 3834–3850, doi: 10.1175/1520-0442(2001)014<3834:NP OTIO>2.0.CO;2.CrossRefGoogle Scholar
  21. Hua, W. J., H. S. Chen, and S. L. Sun, 2014: Uncertainty in land surface temperature simulation over China by CMIP3/CMIP5 models. Theor. Appl. Climatol., 117, 463–474, doi: 10.1007/s00704-013-1020-z.CrossRefGoogle Scholar
  22. Huang, R. H., and L. Lu, 1989: Numerical simulation of the relationship between the anomaly of subtropical high over East Asia and the convective activities in the western tropical Pacific. Adv. Atmos. Sci., 6, 202–214, doi: 10.1007/BF02658016.CrossRefGoogle Scholar
  23. Huffman, G. J., D. T. Bolvin, E. J. Nelkin, et al., 2007: The TRMM multisatellite precipitation analysis (TMPA): Quasiglobal, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeorol., 8, 38–55, doi: 10.1175/JHM 560.1.CrossRefGoogle Scholar
  24. Hundsdorfer, W., and R. A. Trompert, 1994: Method of lines and direct discretization: A comparison for linear advection. Appl. Numer. Math., 13, 469–490, doi: 10.1016/0168-9274(94) 90009-4.CrossRefGoogle Scholar
  25. Hunke, E. C., and J. K. Dukowicz, 1997: An elastic–viscous–plastic model for sea ice dynamics. J. Phys. Oceanogr., 27, 1849–1867, doi: 10.1175/1520-0485(1997)027<1849:AEVPMF> 2.0.CO;2.CrossRefGoogle Scholar
  26. Hurrell, J. W., M. M. Holland, P. R. Gent, et al., 2013: The community earth system model: A framework for collaborative research. Bull. Amer. Meteor. Soc., 94, 1339–1360, doi: 10.1175/BAMS-D-12-00121.1.CrossRefGoogle Scholar
  27. Kanamitsu, M., W. Ebisuzaki, J. Woollen, et al., 2002: NCEP–DOE AMIP-II reanalysis (R-2). Bull. Amer. Meteor. Soc., 83, 1631–1644, doi: 10.1175/Bams-83-11-1631.CrossRefGoogle Scholar
  28. Kang, I. S., K. Jin, B. Wang, et al., 2002: Intercomparison of the climatological variations of Asian summer monsoon precipitation simulated by 10 GCMs. Climate Dyn., 19, 383–395, doi: 10.1007/s00382-002-0245-9.CrossRefGoogle Scholar
  29. Koster, R. D., and M. J. Suarez, 1992: Modeling the land surface boundary in climate models as a composite of independent vegetation stands. J. Geophys. Res. Atmos., 97, 2697–2715, doi: 10.1029/91JD01696.CrossRefGoogle Scholar
  30. Koutroulis, A. G., M. G. Grillakis, I. K. Tsanis, et al., 2016: Evaluation of precipitation and temperature simulation performance of the CMIP3 and CMIP5 historical experiments. Climate Dyn., 47, 1881–1898, doi: 10.1007/s00382-015-2938-x.CrossRefGoogle Scholar
  31. Krishnamurti, T. N., and D. Subrahmanyam, 1982: The 30–50-day mode at 850 mb during MONEX. J. Atmos. Sci., 39, 2088–2095, doi: 10.1175/1520-0469(1982)039<2088:TDMAMD> 2.0.CO;2.CrossRefGoogle Scholar
  32. Kusunoki, S., and O. Arakawa, 2015: Are CMIP5 models better than CMIP3 models in simulating precipitation over East Asia? J. Climate, 28, 5601–5621, doi: 10.1175/JCLI-D-14-00585.1.CrossRefGoogle Scholar
  33. Lau, K. M., and P. H. Chan, 1986: Aspects of the 40–50 day oscillation during the northern summer as inferred from outgoing longwave radiation. Mon. Wea. Rev., 114, 1354–1367, doi: 10.1175/1520-0493(1986)114<1354:AOTDOD>2.0.CO;2.CrossRefGoogle Scholar
  34. Lawrence, D. M., and P. J. Webster, 2002: The boreal summer intraseasonal oscillation: Relationship between northward and eastward movement of convection. J. Atmos. Sci., 59, 1593–1606, doi: 10.1175/1520-0469(2002)059<1593:TBSIOR>2.0. CO;2.CrossRefGoogle Scholar
  35. Li, C. F., and M. Yanai, 1996: The onset and interannual variability of the Asian summer monsoon in relation to land–sea thermal contrast. J. Climate, 9, 358–375, doi: 10.1175/1520-0442(1996)009<0358:TOAIVO>2.0.CO;2.CrossRefGoogle Scholar
  36. Li, J., R. C. Yu, W. H. Yuan, et al., 2015: Precipitation over East Asia simulated by NCAR CAM5 at different horizontal resolutions. J. Adv. Model. Earth Syst., 7, 774–790, doi: 10.1002/2014MS000414.CrossRefGoogle Scholar
  37. Li, T., B. Wang, B. Wu, et al., 2017: Theories on formation of an anomalous anticyclone in western North Pacific during El Niño: A review. J. Meteor. Res., 31, 987–1006, doi: 10.1007/s13351-017-7147-6.CrossRefGoogle Scholar
  38. Lohmann, U., and E. Roeckner, 1996: Design and performance of a new cloud microphysics scheme developed for the ECHAM general circulation model. Climate Dyn., 12, 557–572, doi: 10.1007/BF00207939.CrossRefGoogle Scholar
  39. Madden, R. A., and P. R. Julian, 1971: Detection of a 40–50 day oscillation in the zonal wind in the tropical Pacific. J. Atmos. Sci., 28, 702–708, doi: 10.1175/1520-0469(1971)028<0702: DOADOI>2.0.CO;2.CrossRefGoogle Scholar
  40. Madden, R. A., and P. R. Julian, 1972: Description of global-scale circulation cells in the tropics with a 40–50 day period. J. Atmos. Sci., 29, 1109–1123, doi: 10.1175/1520-0469(1972)029 <1109:DOGSCC>2.0.CO;2.CrossRefGoogle Scholar
  41. Madden, R. A., 1986: Seasonal variations of the 40–50 day oscillation in the tropics. J. Atmos. Sci., 43, 3138–3158, doi: 10. 1175/1520-0469(1986)043<3138:SVOTDO>2.0.CO;2.CrossRefGoogle Scholar
  42. Manabe, S., and K. Bryan, 1969: Climate calculations with a combined ocean–atmosphere model. J. Atmos. Sci., 26, 786–789, doi: 10.1175/1520-0469(1969)026<0786:CCWACO>2.0.CO;2.CrossRefGoogle Scholar
  43. Mantua, N. J., S. R. Hare, Y. Zhang, et al., 1997: A Pacific interdecadal climate oscillation with impacts on salmon production. Bull. Amer. Meteor. Soc., 78, 1069–1080, doi: 10.1175/1520-0477(1997)078<1069:APICOW>2.0.CO;2.CrossRefGoogle Scholar
  44. Mechoso, C. R., A. W. Robertson, N. Barth, et al., 1995: The seasonal cycle over the tropical pacific in coupled ocean–atmosphere general circulation models. Mon. Wea. Rev., 123, 2825–2838, doi: 10.1175/1520-0493(1995)123<2825:TSCOT T>2.0.CO;2.CrossRefGoogle Scholar
  45. Mehran, A., A. AghaKoucha, and T. J. Phillips, 2014: Evaluation of CMIP5 continental precipitation simulations relative to satellite-based gauge-adjusted observations. J. Geophys. Res. Atmos., 119, 1695–1707, doi: 10.1002/2013JD021152.CrossRefGoogle Scholar
  46. Murakami, T., 1980: Empirical orthogonal function analysis of satellite-observed outgoing longwave radiation during summer. Mon. Wea. Rev., 108, 205–222, doi: 10.1175/1520-0493(1980)108<0205:EOFAOS>2.0.CO;2.CrossRefGoogle Scholar
  47. Murray, R. J., 1996: Explicit generation of orthogonal grids for ocean models. J. Comput. Physi., 126, 251–273, doi: 10. 1006/jcph.1996.0136.CrossRefGoogle Scholar
  48. Newman, M., G. P. Compo, and M. A. Alexander, 2003: ENSOforced variability of the Pacific decadal oscillation. J. Climate, 16, 3853–3857, doi: 10.1175/1520-0442(2003)016<38 53:EVOTPD>2.0.CO;2.CrossRefGoogle Scholar
  49. Nitta, T., 1987: Convective activities in the tropical western Pacific and their impact on the Northern Hemisphere summer circulation. J. Meteor. Soc. Japan, 65, 373–390, doi: 10.2151/jmsj1965.65.3_373.CrossRefGoogle Scholar
  50. Niu, G. Y., and Z. L. Yang, 2006: Effects of frozen soil on snowmelt runoff and soil water storage at a continental scale. J. Hydrometeorol., 7, 937–952, doi: 10.1175/JHM538.1.CrossRefGoogle Scholar
  51. Nordeng, T. E., 1994: Extended Versions of the Convective Parameterization Scheme at ECMWF and Their Impact on the Mean and Transient Activity of the Model in the Tropics. Technical Memorandum 206, Reading, UK, ECMWF, 41 pp.Google Scholar
  52. Osborn, T. J., and P. D. Jones, 2014: The CRUTEM4 land-surface air temperature data set: Construction, previous versions and dissemination via Google Earth. Earth Syst. Sci. Data., 6, 61–68, doi: 10.5194/essd-6-61-2014.CrossRefGoogle Scholar
  53. Oueslati, B., and G. Bellon, 2015: The double ITCZ bias in CMIP5 models: Interaction between SST, large-scale circulation and precipitation. Climate Dyn., 44, 585–607, doi: 10.1007/s00382-015-2468-6.CrossRefGoogle Scholar
  54. Philander, S. G. H., 1983: El Niño Southern Oscillation phenomena. Nature, 302, 295–301, doi: 10.1038/302295a0.CrossRefGoogle Scholar
  55. Power, S., F. Tseitkin, S. Torok, et al., 1998: Australian rainfall, Australian temperature and the Southern Oscillation, 1910–1992: Coherent variability and recent changes. Aust. Meteor. Mag., 47, 85–101.Google Scholar
  56. Rayner, N. A., D. E. Parker, E. B. Horton, et al., 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res. Atmos., 108, 4407, doi: 10.1029/2002JD002670.CrossRefGoogle Scholar
  57. Roeckner, E., G. Bäuml, L. Bonaventura, et al., 2003: The atmospheric general circulation model ECHAM5. Part I: Model description. Report No. 349, Hamburg, Max-Planck-Institut für Meteorologie, Germany, 127 pp.Google Scholar
  58. Rong, X. Y., R. H. Zhang, and T. Li, 2010: Impacts of Atlantic sea surface temperature anomalies on Indo–East Asian summer monsoon–ENSO relationship. Chinese Sci. Bull., 55, 2458–2468, doi: 10.1007/s11434-010-3098-3.CrossRefGoogle Scholar
  59. Sikka, D. R., and S. Gadgil, 1980: On the maximum cloud zone and the ITCZ over Indian longitudes during the southwest monsoon. Mon. Wea. Rev., 108, 1840–1853, doi: 10.1175/1520-0493(1980)108<1840:OTMCZA>2.0.CO;2.CrossRefGoogle Scholar
  60. Song, F. F., and T. J. Zhou, 2014a: Interannual variability of East Asian summer monsoon simulated by CMIP3 and CMIP5 AGCMs: Skill dependence on Indian Ocean–western Pacific anticyclone teleconnection. J. Climate, 27, 1679–1697, doi: 10.1175/JCLI-D-13-00248.1.CrossRefGoogle Scholar
  61. Song, F. F., and T. J. Zhou, 2014b: The climatology and interannual variability of East Asian summer monsoon in CMIP5 coupled models: Does air–sea coupling improve the simulations? J. Climate, 27, 8761–8777, doi: 10.1175/JCLI-D-14-00396.1.CrossRefGoogle Scholar
  62. Stanfield, R. E., J. H. Jiang, X. Q. Dong, et al., 2016: A quantitative assessment of precipitation associated with the ITCZ in the CMIP5 GCM simulations. Climate Dyn., 47, 1863–1880, doi: 10.1007/s00382-015-2937-y.CrossRefGoogle Scholar
  63. Stieglitz, M., D. Rind, J. Famiglietti, et al., 1997: An efficient approach to modeling the topographic control of surface hydrology for regional and global climate modeling. J. Climate, 10, 118–137, doi: 10.1175/1520-0442(1997)010<0118:AEATMT> 2.0.CO;2.CrossRefGoogle Scholar
  64. Su, F. G., X. L. Duan, D. L. Chen, et al., 2013: Evaluation of the global climate models in the CMIP5 over the Tibetan Plateau. J. Climate, 26, 3187–3208, doi: 10.1175/JCLI-D-12-00321.1.CrossRefGoogle Scholar
  65. Sundqvist, H., 1978: A parameterization scheme for non-convective condensation including prediction of cloud water content. Quart. J. Roy. Meteor. Soc., 104, 677–690, doi: 10.1002/qj. 49710444110.CrossRefGoogle Scholar
  66. Sweby, P. K., 1984: High resolution schemes using flux limiters for hyperbolic conservation laws. SIAM J. Numer. Analy., 21, 995–1011, doi: 10.1137/0721062.CrossRefGoogle Scholar
  67. Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485–498, doi: 10.1175/BAMS-D-11-00094.1.CrossRefGoogle Scholar
  68. Tian, B. J., E. J. Fetzer, B. H. Kahn, et al., 2013: Evaluating CMIP5 models using AIRS tropospheric air temperature and specific humidity climatology. J. Geophys. Res. Atmos., 118, 114–134, doi: 10.1029/2012JD018607.CrossRefGoogle Scholar
  69. Tiedtke, M., 1989: A comprehensive mass flux scheme for cumulus parameterization in large-scale models. Mon. Wea. Rev., 117, 1779–1800, doi: 10.1175/1520-0493(1989)117<1779:AC MFSF>2.0.CO;2.CrossRefGoogle Scholar
  70. Tziperman, E., S. E. Zebiak, and M. A. Cane, 1997: Mechanisms of seasonal–ENSO interaction. J. Atmos. Sci., 54, 61–71, doi: 10.1175/1520-0469(1997)054<0061:MOSEI>2.0.CO;2.CrossRefGoogle Scholar
  71. Vautard, R., P. Yiou, and M. Ghil, 1992: Singular-spectrum analysis: A toolkit for short, noisy chaotic signals. Physica D: Nonlinear Phenomena, 58, 95–126, doi: 10.1016/0167-2789 (92)90103-T.CrossRefGoogle Scholar
  72. Wang, B., and H. Rui, 1990: Synoptic climatology of transient tropical intraseasonal convection anomalies: 1975–1985. Meteor. Atmos. Phys., 44, 43–61, doi: 10.1007/BF01026810.CrossRefGoogle Scholar
  73. Wang, B., and Z. Fan, 1999: Choice of South Asian summer monsoon indices. Bull. Amer. Meteor. Soc., 80, 629–638, doi: 10.1175/1520-0477(1999)080<0629:COSASM>2.0.CO;2.CrossRefGoogle Scholar
  74. Wang, B., R. G. Wu, and T. Li, 2003: Atmosphere–warm ocean interaction and its impacts on Asian–Australian monsoon variation. J. Climate, 16, 1195–1211, doi: 10.1175/1520-0442(2003)16<1195:AOIAII>2.0.CO;2.CrossRefGoogle Scholar
  75. Wang, B., Q. H. Ding, X. H. Fu, et al., 2005: Fundamental challenge in simulation and prediction of summer monsoon rainfall. Geophys. Res. Lett., 32, L15711, doi: 10.1029/2005 GL022734.CrossRefGoogle Scholar
  76. Wang, B., Z. W. Wu, J. P. Li, et al., 2008: How to measure the strength of the East Asian summer monsoon? J. Climate, 21, 4449–4463, doi: 10.1175/2008JCLI2183.1.CrossRefGoogle Scholar
  77. Webster, P. J., V. O. Magaña, T. N. Palmer, et al., 1998: Monsoons: Processes, predictability, and the prospects for prediction. J. Geophys. Res. Oceans, 103, 14451–14510, doi: 10. 1029/97JC02719.CrossRefGoogle Scholar
  78. Winton, M., 2000: A reformulated three-layer sea ice model. J. Atmos. Oceanic Technol., 17, 525–531, doi: 10.1175/1520-0426(2000)017<0525:ARTLSI>2.0.CO;2.CrossRefGoogle Scholar
  79. Wu, B., T. J. Zhou, and T. Li, 2009: Seasonally evolving dominant interannual variability modes of East Asian climate. J. Climate, 22, 2992–3005, doi: 10.1175/2008JCLI2710.1.CrossRefGoogle Scholar
  80. Xie, S. P., K. M. Hu, J. Hafner, et al., 2009: Indian ocean capacitor effect on Indo–western Pacific climate during the summer following El Niño. J. Climate, 22, 730–747, doi: 10.1175/2008JCLI2544.1.CrossRefGoogle Scholar
  81. Xin, Y. F., B. Y. Wu, L. G. Bian, et al., 2012: Response of the East Asian climate system to water and heat changes of global frozen soil using NCAR CAM model. Chinese Sci. Bull., 57, 4462–4471, doi: 10.1007/s11434-012-5361-2.CrossRefGoogle Scholar
  82. Xu, J. W., Y. H. Gao, D. L. Chen, et al., 2017: Evaluation of global climate models for downscaling applications centred over the Tibetan Plateau. Int. J. Climatol., 37, 657–671, doi: 10. 1002/joc.4731.CrossRefGoogle Scholar
  83. Xue, Y. K., H. M. H. Juang, W. P. Li, et al., 2004: Role of land surface processes in monsoon development: East Asia and West Africa. J. Geophys. Res. Atmos., 109, D03105, doi: 10. 1029/2003JD003556.Google Scholar
  84. Yang, B., Y. C. Zhang, Y. Qian, et al., 2015: Parametric sensitivity analysis for the Asian summer monsoon precipitation simulation in the Beijing Climate Center AGCM, Version 2.1. J. Climate, 28, 5622–5644, doi: 10.1175/JCLI-D-14-00655.1.CrossRefGoogle Scholar
  85. Yasunari, T., 1979: Cloudiness fluctuations associated with the Northern Hemisphere summer monsoon. J. Meteor. Soc. Japan, 57, 227–242, doi: 10.2151/jmsj1965.57.3_227.CrossRefGoogle Scholar
  86. Yasunari, T., 1980: A quasi-stationary appearance of 30 to 40 day period in the cloudiness fluctuations during the summer monsoon over India. J. Meteor. Soc. Japan, 58, 225–229, doi: 10.2151/jmsj1965.58.3_225.CrossRefGoogle Scholar
  87. Yu, R. C., 1994: A two-step shape-preserving advection scheme. Adv. Atmos. Sci., 11, 479–490, doi: 10.1007/BF02658169.CrossRefGoogle Scholar
  88. Yu, R. C., J. Li, Y. Zhang, et al., 2015: Improvement of rainfall simulation on the steep edge of the Tibetan Plateau by using a finite-difference transport scheme in CAM5. Climate Dyn., 45, 2937–2948, doi: 10.1007/s00382-015-2515-3.CrossRefGoogle Scholar
  89. Zebiak, S. E., and M. A. Cane, 1987: A model El Niño–Southern Oscillation. Mon. Wea. Rev., 115, 2262–2278, doi: 10.1175/1520-0493(1987)115<2262:AMENO>2.0.CO;2.CrossRefGoogle Scholar
  90. Zhang, H., G. Y. Shi, T. Nakajima, et al., 2006a: The effects of the choice of the k-interval number on radiative calculations. J. Quanti. Spectros. Radiat. Trans., 98, 31–43, doi: 10.1016/j.jqsrt.2005.05.090.CrossRefGoogle Scholar
  91. Zhang, H., T. Suzuki, T. Nakajima, et al., 2006b: Effects of band division on radiative calculations. Optical Engineer., 45, 016002, doi: 10.1117/1.2160521.CrossRefGoogle Scholar
  92. Zhang, R. H., and Z. Y. Zuo, 2011: Impact of spring soil moisture on surface energy balance and summer monsoon circulation over East Asia and precipitation in East China. J. Climate, 24, 3309–3322, doi: 10.1175/2011JCLI4084.1.CrossRefGoogle Scholar
  93. Zhang, R. H., A. Sumi, and M. Kimoto, 1996: Impact of El Niño on the East Asian monsoon: A diagnostic study of the’ 86/87 and’ 91/92 events. J. Meteor. Soc. Japan, 74, 49–62, doi: 10.2151/jmsj1965.74.1_49.CrossRefGoogle Scholar
  94. Zhang, Y., J. M. Wallace, and D. S. Battisti, 1997: ENSO-like interdecadal variability: 1900–93. J. Climate, 10, 1004–1020, doi: 10.1175/1520-0442(1997)010<1004:ELIV>2.0.CO;2.CrossRefGoogle Scholar
  95. Zhang, Y., R. C. Yu, J. Li, et al., 2013: An implementation of a leaping-point two-step shape-preserving advection scheme in the high-resolution spherical latitude–longitude grid. Acta Meteor. Sinica, 71, 1089–1102, doi: 10.11676/qxxb2013.085. (in Chinese)CrossRefGoogle Scholar
  96. Zhou, T. J., W. Bo, and B. Wang, 2009: How well do atmospheric general circulation models capture the leading modes of the interannual variability of the Asian–Australian monsoon? J. Climate, 22, 1159–1173, doi: 10.1175/2008JCLI2245.1.CrossRefGoogle Scholar

Copyright information

© The Chinese Meteorological Society and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Xinyao Rong
    • 1
  • Jian Li
    • 1
    Email author
  • Haoming Chen
    • 1
  • Yufei Xin
    • 1
  • Jingzhi Su
    • 1
  • Lijuan Hua
    • 1
  • Tianjun Zhou
    • 1
    • 2
    • 3
  • Yanjun Qi
    • 1
  • Zhengqiu Zhang
    • 1
  • Guo Zhang
    • 1
  • Jianduo Li
    • 1
  1. 1.State Key Laboratory of Severe WeatherChinese Academy of Meteorological SciencesBeijingChina
  2. 2.State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric PhysicsChinese Academy of SciencesBeijingChina
  3. 3.University of the Chinese Academy of SciencesBeijingChina

Personalised recommendations