Journal of Meteorological Research

, Volume 32, Issue 4, pp 560–570 | Cite as

Sensitivity Experiments on the Poleward Shift of Tropical Cyclones over the Western North Pacific under Warming Ocean Conditions

  • Yixuan Shen
  • Yuan Sun
  • Zhong Zhong
  • Kefeng Liu
  • Jian Shi


Recent studies found that in the context of global warming, the observed tropical cyclones (TCs) exhibit significant poleward migration trend in terms of the mean latitude where TCs reach their lifetime-maximum intensity in the western North Pacific (WNP). This poleward migration of TC tracks can be attributed to not only anthropogenic forcing (e.g., continuous increase of sea surface temperature (SST)), but also impacts of other factors (e.g., natural variability). In the present study, to eliminate the impacts of other factors and thus focus on the impact of unvaried SST on climatological WNP TC tracks, the mesoscale Weather Research and Forecasting (WRF) model is used to conduct a suite of idealized sensitivity experiments with increased SST. Comparisons among the results of these experiments show the possible changes in climatological TC track, TC track density, and types of TC track in the context of SST increase. The results demonstrate that under the warmer SST conditions, the climatological mean TC track systematically shifts poleward significantly in the WNP, which is consistent with the previous studies. Meanwhile, the ocean warming also leads to the decreased (increased) destructive potential of TCs in low (middle) latitudes, and thus northward migration of the region where TCs have the largest impact. Further results imply the possibility that under the ocean warming, the percentage of TCs with westward/northwestward tracks decreases/increases distinctly.

Key words

tropical cyclone ocean warming poleward shift numerical experiment 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bell, M. M., and M. T. Montgomery, 2008: Observed structure, evolution, and potential intensity of category 5 Hurricane Isabel (2003) from 12 to 14 September. Mon. Wea. Rev., 136, 2023–2046, doi: 10.1175/2007MWR1858.1.CrossRefGoogle Scholar
  2. Camargo, S. J., 2013: Global and regional aspects of tropical cyclone activity in the CMIP5 models. J. Climate, 26, 9880–9902, doi: 10.1175/JCLI-D-12-00549.1.CrossRefGoogle Scholar
  3. Camargo, S. J., A. G. Barnston, and S. E. Zebiak, 2005: A statistical assessment of tropical cyclone activity in atmospheric general circulation models. Tellus, 57, 589–604, doi: 10.3402/tellusa.v57i4.14705.CrossRefGoogle Scholar
  4. Cox, P. M., R. A. Betts, C. D. Jones, et al., 2000: Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. Nature, 408, 184–187, doi: 10.1038/35041539.CrossRefGoogle Scholar
  5. Dudhia, J., 1989: Numerical study of convection observed during the winter monsoon experiment using a mesoscale twodimensional model. J. Atmos. Sci., 46, 3077–3107, doi: 10.1175/1520-0469(1989)046<3077:NSOCOD>2.0.CO;2.CrossRefGoogle Scholar
  6. Elsner, J. B., 2003: Tracking hurricanes. Bull. Amer. Meteor. Soc., 84, 353–356, doi: 10.1175/BAMS-84-3-353.CrossRefGoogle Scholar
  7. Elsner, J. B., J. C. Trepanier, S. E. Strazzo, et al., 2012: Sensitivity of limiting hurricane intensity to ocean warmth. Geophys. Res. Lett., 39, 17702, doi: 10.1029/2012GL053002.CrossRefGoogle Scholar
  8. Emanuel, K., 2000: A statistical analysis of tropical cyclone intensity. Mon. Wea. Rev., 128, 1139–1152, doi: 10.1175/1520-0493(2000)128<1139:ASAOTC>2.0.CO;2.CrossRefGoogle Scholar
  9. Emanuel, K. A., 1986: An air–sea interaction theory for tropical cyclones. Part I: Steady-state maintenance. J. Atmos. Sci., 43, 585–605, doi: 10.1175/1520-0469(1986)043<0585:AASITF> 2.0.CO;2.Google Scholar
  10. Emanuel, K., R. Sundararajan, and J. Williams, 2008: Hurricanes and global warming: Results from downscaling IPCC AR4 simulations. Bull. Amer. Meteor. Soc., 89, 347–368, doi: 10.1175/BAMS-89-3-347.CrossRefGoogle Scholar
  11. Grell, G. A., and D. Dévényi, 2002: A generalized approach to parameterizing convection combining ensemble and data assimilation techniques. Geophys. Res. Lett., 29, 587–590, doi: 10.1029/2002GL0153.CrossRefGoogle Scholar
  12. Henderson-Sellers, A., H. Zhang, G. Berz, et al., 1998: Tropical cyclones and global climate change: A post-IPCC assessment. Bull. Amer. Meteor. Soc., 79, 19–38, doi: 10.1175/1520-0477(1998)079<0019:TCAGCC>2.0.CO;2.CrossRefGoogle Scholar
  13. Holland, G. J., 1997: The maximum potential intensity of tropical cyclones. J. Atmos. Sci., 54, 2519–2541, doi: 10.1175/1520-0469(1997)054<2519:TMPIOT>2.0.CO;2.CrossRefGoogle Scholar
  14. Hong, S.-Y., 2010: A new stable boundary-layer mixing scheme and its impact on the simulated East Asian summer monsoon. Quart. J. Roy. Meteor. Soc., 136, 1481–1496, doi: 10.1002/Qj.665.CrossRefGoogle Scholar
  15. Hong, S.-Y., H.-M. H. Juang, and Q. Y. Zhao, 1998: Implementation of prognostic cloud scheme for a regional spectral model. Mon. Wea. Rev., 126, 2621–2639, doi: 10.1175/1520-0493 (1998)126<2621:IOPCSF>2.0.CO;2.CrossRefGoogle Scholar
  16. Hong, S.-Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 2318–2341, doi: 10.1175/Mwr3199.1.CrossRefGoogle Scholar
  17. Kim, J.-H., C.-H. Ho, H.-S. Kim, et al., 2012: 2010 western North Pacific typhoon season: Seasonal overview and forecast using a track-pattern-based model. Wea. Forecasting, 27, 730–743, doi: 10.1175/waf-d-11-00109.1.CrossRefGoogle Scholar
  18. Knapp, K. R., M. C. Kruk, D. H. Levinson, et al., 2010: The international best track archive for climate stewardship (IBTrACS): Unifying tropical cyclone data. Bull. Amer. Meteor. Soc., 91, 363–376, doi: 10.1175/2009BAMS2755.1.CrossRefGoogle Scholar
  19. Knutson, T. R., 2010: Tropical cyclones and climate change: An Indian Ocean perspective. Indian Ocean Tropical Cyclones and Climate Change, Y. Charabi, Ed., Springer, Dordrecht, 47–49, doi: 10.1007/978-90-481-3109-9_7.Google Scholar
  20. Kossin, J. P., K. A. Emanuel, and G. A. Vecchi, 2014: The poleward migration of the location of tropical cyclone maximum intensity. Nature, 509, 349–352, doi: 10.1038/nature13278.CrossRefGoogle Scholar
  21. Kossin, J. P., K. A. Emanuel, and S. J. Camargo, 2016: Past and projected changes in western North Pacific tropical cyclone exposure. J. Climate, 29, 5725–5739, doi: 10.1175/JCLI-D-16-0076.1.CrossRefGoogle Scholar
  22. Lau, K.-M., and H. Y. Weng, 1999: Interannual, decadal–interdecadal, and global warming signals in sea surface temperature during 1955–97. J. Climate, 12, 1257–1267, doi: 10.1175/1520-0442(1999)012<1257:IDIAGW>2.0.CO;2.CrossRefGoogle Scholar
  23. Lau, W. K. M., J. J. Shi, W. K. Tao, et al., 2016: What would happen to superstorm Sandy under the influence of a substantially warmer Atlantic Ocean? Geophys. Res. Lett., 43, 802–811, doi: 10.1002/2015GL067050.CrossRefGoogle Scholar
  24. Li, T., M. H. Kwon, M. Zhao, et al., 2010: Global warming shifts Pacific tropical cyclone location. Geophys. Res. Lett., 37, L21804, doi: 10.1029/2010GL045124.Google Scholar
  25. MacQueen, J., 1967: Some methods for classification and analysis of multivariate observations. Fifth Berkeley Symposium on Mathematical Statistics and Probability, Berkeley, CA, 16 January, University of California Press, 281–297Google Scholar
  26. Mann, H. B., and D. R. Whitney, 1947: On a test of whether one of two random variables is stochastically larger than the other. Ann. Math. Statist., 18, 50–60, doi: 10.1214/aoms/1177730491.CrossRefGoogle Scholar
  27. Mlawer, E. J., S. J. Taubman, P. D. Brown, et al., 1997: Radiative transfer for inhomogeneous atmospheres: TMRR, a validated correlated-k model for the longwave. J. Geophys. Res. Atmos., 102, 16663–16682, doi: 10.1029/97JD00237.CrossRefGoogle Scholar
  28. Nakamura, J., U. Lall, Y. Kushnir, et al., 2009: Classifying North Atlantic tropical cyclone tracks by mass moments. J. Climate, 22, 5481–5494, doi: 10.1175/2009JCLI2828.1.CrossRefGoogle Scholar
  29. Nakamura, J., S. J. Camargo, A. H. Sobel, et al., 2017: Western North Pacific tropical cyclone model tracks in present and future climates. J. Geophys. Res. Atmos., 122, 9721–9744, doi: 10.1002/2017JD027007.CrossRefGoogle Scholar
  30. Strazzo, S., J. B. Elsner, J. C. Trepanier, et al., 2013a: Frequency, intensity, and sensitivity to sea surface temperature of North Atlantic tropical cyclones in best-track and simulated data. J. Adv. Model. Earth Syst., 5, 500–509, doi: 10.1002/jame. 20036.CrossRefGoogle Scholar
  31. Strazzo, S., J. B. Elsner, T. LaRow, et al., 2013b: Observed versus GCM-generated local tropical cyclone frequency: Comparisons using a spatial lattice. J. Climate, 26, 8257–8268, doi: 10.1175/JCLI-D-12-00808.1.CrossRefGoogle Scholar
  32. Sugi, M., H. Murakami, and J. Yoshimura, 2009: A reduction in global tropical cyclone frequency due to global warming. Sci. Online Lett. Atmos., 5, 164–167, doi: 10.2151/sola.2009-042.Google Scholar
  33. Sun, Y., Z. Zhong, L. Yi, et al., 2015a: Dependence of the relationship between the tropical cyclone track and western Pacific subtropical high intensity on initial storm size: A numerical investigation. J. Geophys. Res. Atmos., 120, 11451–11467, doi: 10.1002/2015JD023716.CrossRefGoogle Scholar
  34. Sun, Y., Z. Zhong, H. Dong, et al., 2015b: Sensitivity of tropical cyclone track simulation over the western North Pacific to different heating/drying rates in the Betts–Miller–Janjić scheme. Mon. Wea. Rev., 143, 3478–3494, doi: 10.1175/MWR-D-14-00340.1.CrossRefGoogle Scholar
  35. Sun, Y., Z. Zhong, T. Li, et al., 2017a: Impact of ocean warming on tropical cyclone track over the western North Pacific: A numerical investigation based on two case studies. J. Geophys. Res., 122, 8617–8630, doi: 10.1002/2017JD026959.CrossRefGoogle Scholar
  36. Sun, Y., Z. Zhong, T. Li, et al., 2017b: Impact of ocean warming on tropical cyclone size and its destructiveness. Sci. Rep., 7, 8154, doi: 10.1038/s41598-017-08533-6.CrossRefGoogle Scholar
  37. Tonkin, H., C. Landsea, G. J. Holland, et al., 1997: Tropical cyclones and climate change: A preliminary assessment. Assessing Climate Change: Results from the Model Evaluation Consortium for Climate Assessment, W. Howe and A. Henderson-Sellers, Eds., Gordon and Breach, Sydney, 327–360Google Scholar
  38. Tsutsui, J., and A. Kasahara, 2000: The role of cumulus schemes in the reproducibility of tropical cyclones by the NCAR Community Climate Model (CCM3). Preprints, 24th Conf. on Hurricanes and Tropical Meteorology, Fort Lauderdale, FL, Amer. Meteor. Soc., 350–351Google Scholar
  39. Ueno, M., and J. Yoshimura, 2002: Impact of physical processes in a GCM on the frequency of tropical cyclones. WGNE Blue Book 2002: Research Activities in Atmospheric and Oceanic Modelling, WMO/TD-No. 1105, 0429–0430Google Scholar
  40. Vitart, F., J. L. Anderson, J. Sirutis, et al., 2001: Sensitivity of tropical storms simulated by a general circulation model to changes in cumulus parametrization. Quart. J. Roy. Meteor. Soc., 127, 25–51, doi: 10.1002/qj.49712757103.CrossRefGoogle Scholar
  41. Wang, Y. X., Y. Sun, Q. F. Liao, et al., 2017: Impact of initial storm intensity and size on the simulation of tropical cyclone track and western Pacific subtropical high extent. J. Meteor. Res., 31, 946–954, doi: 10.1007/s13351-017-7024-3.CrossRefGoogle Scholar
  42. Webster, P. J., G. J. Holland, J. A. Curry, et al., 2005: Changes in tropical cyclone number, duration, and intensity in a warming environment. Science, 309, 1844–1846, doi: 10.1126/science. 1116448.CrossRefGoogle Scholar
  43. Wu, L. G., and B. Wang, 2004: Assessing impacts of global warming on tropical cyclone tracks. J. Climate, 17, 1686–1698, doi:1 0.1175/1520-0442(2004)017<1686:AIOGWO>2.0.CO;2.CrossRefGoogle Scholar
  44. Wu, L. G., B. Wang, and S. Q. Geng, 2005: Growing typhoon influence on East Asia. Geophys. Res. Lett., 32, L18703, doi: 10.1029/2005GL022937.Google Scholar
  45. Ying, M., E.-J. Cha, and H. J. Kwon, 2011: Comparison of three western North Pacific tropical cyclone best track datasets in a seasonal context. J. Meteor. Soc. Japan, 89, 211–224, doi: 10.2151/jmsj.2011-303.CrossRefGoogle Scholar
  46. Yoshimura, J., M. Sugi, and A. Noda, 2006: Influence of greenhouse warming on tropical cyclone frequency. J. Meteor. Soc. Japan, 84, 405–428, doi: 10.2151/jmsj.84.405.CrossRefGoogle Scholar
  47. Yu, J. H., Y. Q. Zheng, Q. S. Wu, et al., 2016: K-means clustering for classification of the northwestern Pacific tropical cyclone tracks. J. Trop. Meteor., 22, 127–135, doi: 10.16555/j.1006-8775.2016.02.003.Google Scholar

Copyright information

© The Chinese Meteorological Society and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Yixuan Shen
    • 1
  • Yuan Sun
    • 1
  • Zhong Zhong
    • 1
  • Kefeng Liu
    • 1
  • Jian Shi
    • 1
  1. 1.College of Meteorology and OceanographyNational University of Defense TechnologyNanjingChina

Personalised recommendations