Journal of Meteorological Research

, Volume 32, Issue 5, pp 819–828 | Cite as

Possible Impact of Spatial and Temporal Non-Uniformity in Land Surface Temperature Data on Trend Estimation

  • Zhiyu Li
  • Wenjun Zhang
  • Haiming Xu
Regular Articles


The present work investigates possible impact of the non-uniformity in observed land surface temperature on trend estimation, based on Climatic Research Unit (CRU) Temperature Version 4 (CRUTEM4) monthly temperature datasets from 1900 to 2012. The CRU land temperature data exhibit remarkable non-uniformity in spatial and temporal features. The data are characterized by an uneven spatial distribution of missing records and station density, and display a significant increase of available sites around 1950. Considering the impact of missing data, the trends seem to be more stable and reliable when estimated based on data with < 40% missing percent, compared to the data with above 40% missing percent. Mean absolute error (MAE) between data with < 40% missing percent and global data is only 0.011°C (0.014°C) for 1900–50 (1951–2012). The associated trend estimated by reliable data is 0.087°C decade–1 (0.186°C decade–1) for 1900–50 (1951–2012), almost the same as the trend of the global data. However, due to non-uniform spatial distribution of missing data, the global signal seems mainly coming from the regions with good data coverage, especially for the period 1900–50. This is also confirmed by an extreme test conducted with the records in the United States and Africa. In addition, the influences of spatial and temporal non-uniform features in observation data on trend estimation are significant for the areas with poor data coverage, such as Africa, while insignificant for the countries with good data coverage, such as the United States.

Key words

temperature trend gridded data non-uniformity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Brohan, P., J. J. Kennedy, I. Harris, et al.,2006: Uncertainty estimates in regional and global observed temperature changes: A new data set from 1850. J. Geophys. Res. Atmos., 111, D12106, doi: 10.1029/2005JD006548.CrossRefGoogle Scholar
  2. Cowtan, K., and R. G. Way, 2014: Coverage bias in the Had-CRUT4 temperature series and its impact on recent temperature trends. Quart. J. Roy. Meteor. Soc., 140, 1935–1944, doi: 10.1002/qj.2297.CrossRefGoogle Scholar
  3. England, M. H., S. McGregor, and P. Spence, 2014: Recent intensification of wind-driven circulation in the Pacific and the ongoing warming hiatus. Nat. Clim. Change, 4, 222–227, doi: 10.1038/nclimate2106.CrossRefGoogle Scholar
  4. Hansen, J., R. Ruedy, M. Sato, et al.,2010: Global surface temperature change. Rev. Geophys., 48, RG4004, doi: 10.1029/20 10RG000345.CrossRefGoogle Scholar
  5. Hausfather, Z., M. J. Menne, C. N. Williams, et al.,2013: Quantifying the effect of urbanization on U.S. historical climatology network temperature records. J. Geophys. Res. Atmos., 118, 481–494, doi: 10.1029/2012JD018509.CrossRefGoogle Scholar
  6. Hofstra, N., M. New, and C. McSweeney, 2010: The influence of interpolation and station network density on the distributions and trends of climate variables in gridded daily data. Climate Dyn., 35, 841–858, doi: 10.1007/s00382-009-0698-1.CrossRefGoogle Scholar
  7. IPCC, 2013. Climate Change 2013: the Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, T. F. Stocker, D. Qin, G. K. Plattner, et al., Eds., Cambridge University Press, Cambridge, UK and New York, NY, USA, 1535 pp.Google Scholar
  8. Jones, P. D., 1994: Hemispheric surface air temperature variations: A reanalysis and an update to 1993. J. Climate, 7, 1794–1802, doi: 10.1175/1520-0442(1994)007<1794:HSATVA>2.0.CO;2.CrossRefGoogle Scholar
  9. Jones, P. D., and A. Moberg, 2003: Hemispheric and large-scale surface air temperature variations: An extensive revision and an update to 2001. J. Climate, 16, 206–223, doi: 10.1175/1520-0442(2003)016<0206:HALSSA>2.0.CO;2.CrossRefGoogle Scholar
  10. Jones, P. D., D. H. Lister, T. J. Osborn, et al.,2012: Hemispheric and large-scale land-surface air temperature variations: An extensive revision and an update to 2010. J. Geophys. Res. At-mos., 117, D05127, doi: 10.1029/2011JD017139.Google Scholar
  11. Karl, T. R., A. Arguez, B. Y. Huang, et al.,2015: Possible artifacts of data biases in the recent global surface warming hiatus. Science, 348, 1469–1472, doi: 10.1126/science.aaa5632.CrossRefGoogle Scholar
  12. Lawrimore, J. H., M. J. Menne, B. E. Gleason, et al.,2011: An overview of the Global Historical Climatology Network monthly mean temperature data set, version 3. J. Geophys. Res. Atmos., 116, D19121, doi: 10.1029/2011JD016187.CrossRefGoogle Scholar
  13. McKitrick, R., 2010: A critical review of global surface temperature data products. SSRN Electronic Journal, 1–72, doi: 10.21 39/ssrn.1653928.Google Scholar
  14. Meehl, G. A., A. X. Hu, B. D. Santer, et al.,2016: Contribution of the Interdecadal Pacific Oscillation to twentieth-century global surface temperature trends. Nat. Clim. Change, 6, 1005–1008, doi: 10.1038/NCLIMATE3107.CrossRefGoogle Scholar
  15. Morice, C. P., J. J. Kennedy, N. A. Rayner, et al.,2012: Quantifying uncertainties in global and regional temperature change using an ensemble of observational estimates: The Had-CRUT4 data set. J. Geophys. Res. Atmos., 117, D08101, doi: 10.1029/2011JD017187.CrossRefGoogle Scholar
  16. Ren, G. Y., Y. Y. Ren, Q. X. Li, et al.,2014: An overview on global land surface air temperature change. Adv. Earth Sci., 29, 934–946, doi: 10.11867/j.issn.1001-8166.2014.08.0934. (in Chinese)Google Scholar
  17. Ren, G. Y., Y. H. Ding, and G. L. Tang, 2017: An overview of mainland China temperature change research. J. Meteor. Res., 31, 3–16, doi: 10.1007/s13351-017-6195-2.CrossRefGoogle Scholar
  18. Saffioti, C., E. M. Fischer, and R. Knutti, 2015: Contributions of atmospheric circulation variability and data coverage bias to the warming hiatus. Geophys. Res. Lett., 42, 2385–2391, doi: 10.1002/2015GL063091.CrossRefGoogle Scholar
  19. Turner, J., S. R. Colwell, G. J. Marshall, et al.,2004: The scar reader project: toward a high-quality database of mean antarctic meteorological observations. J. Climate, 17, 2890–2898, doi: 10.1175/1520-0442(2004)017<2890:TSRPTA>2.0.CO;2.CrossRefGoogle Scholar
  20. Vose, R. S., R. L. Schmoyer, P. M. Steurer, et al.,1992: The Global Historical Climatology Network: Long-Term Monthly Temperature, Precipitation, Sea Level Pressure, and Station Pressure Data. Rep. ORNL/CDIAC-53. NDP-041, 325 pp. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, Oak Ridge, TN.Google Scholar
  21. Vose, R. S., D. Arndt, V. F. Banzon, et al.,2012: NOAA’s merged land–ocean surface temperature analysis. Bull. Amer. Meteor. Soc., 93, 1677–1685, doi: 10.1175/BAMS-D-11-00241.1.CrossRefGoogle Scholar
  22. Wang, K. C., 2014: Sampling biases in datasets of historical mean air temperature over land. Sci. Rep., 4, 4637, doi: 10.1038/srep04637.CrossRefGoogle Scholar
  23. Williams, C. N., M. J. Menne, and P. W. Thorne, 2012: Benchmarking the performance of pairwise homogenization of surface temperatures in the United States. J. Geophys. Res. Atmos., 117, D05116, doi: 10.1029/2011JD016761.CrossRefGoogle Scholar
  24. Xu, J. J., and A. M. Powell Jr., 2010: Ensemble spread and its implication for the evaluation of temperature trends from multiple radiosondes and reanalysis products. Geophys. Res. Lett., 37, L17704, doi: 10.1029/2010GL044300.Google Scholar

Copyright information

© The Chinese Meteorological Society and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Joint International Research Laboratory of Climate and Environment Change, Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Key Laboratory of Meteorological Disaster of Ministry of EducationNanjing University of Information Science &TechnologyNanjingChina
  2. 2.College of Atmospheric SciencesNanjing University of Information Science & TechnologyNanjingChina

Personalised recommendations