Journal of Meteorological Research

, Volume 32, Issue 4, pp 534–547 | Cite as

Influence of the Boreal Summer Intraseasonal Oscillation on Extreme Temperature Events in the Northern Hemisphere

  • Yifei Diao
  • Tim Li
  • Pang-Chi Hsu
Regular Articles


The impact of the boreal summer intraseasonal oscillation (BSISO) on extreme hot and cool events was investigated, by analyzing the observed and reanalysis data for the period from 1983 to 2012. It is found that the frequency of the extreme events in middle and high latitudes is significantly modulated by the BSISO convection in the tropics, with a 3–9-day lag. During phases 1 and 2 when the BSISO positive rainfall anomaly is primarily located over a northwest–southeast oriented belt extending from India to Maritime Continent and a negative rainfall anomaly appears in western North Pacific, the frequency of extreme hot events is 40% more than the frequency of non-extreme hot events. Most noticeable increase appears in midlatitude North Pacific (north of 40°N) and higher-latitude polar region.

Two physical mechanisms are primarily responsible for the change of the extreme frequency. First, an upper-tropospheric Rossby wave train (due to the wave energy propagation) is generated in response to a negative heating anomaly over tropical western North Pacific in phases 1 and 2. This wave train consists of a strong high pressure anomaly center northeast of Japan, a weak low pressure anomaly center over Alaska, and a strong high pressure anomaly center over the western coast of United States. Easterly anomalies to the south of the two strong midlatitude high pressure centers weaken the climatological subtropical jet along 40°N, which is accompanied by anomalous subsidence and warming in North Pacific north of 40°N. Second, an enhanced monsoonal heating over South Asia and East Asia sets up a transverse monsoonal overturning circulation, with large-scale ascending (descending) anomalies over tropical Indian (Pacific) Ocean. Both the processes favor more frequent extreme hot events in higher-latitude Northern Hemisphere. An anomalous atmospheric general circulation model is used to confirm the tropical heating effect.

Key words

boreal summer intraseasonal oscillation extreme hot events extreme cool events Rossby wave train monsoonal circulation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Annamalai, H., and J. M. Slingo, 2001: Active/break cycles: Diagnosis of the intraseasonal variability of the Asian summer monsoon. Climate Dyn., 18, 85–102, doi: 10.1007/s0038 20100161.CrossRefGoogle Scholar
  2. Chen, J. P., Z. P. Wen, R. G. Wu, et al., 2015: Influences of northward propagating 25–90-day and quasi-biweekly oscillations on eastern China summer rainfall. Climate Dyn., 45, 105–124, doi: 10.1007/s00382-014-2334-y.CrossRefGoogle Scholar
  3. Chen, R. D., Z. P. Wen, and R. Y. Lu, 2018: Large-scale circulation anomalies and intraseasonal oscillations associated with long-lived extreme heat events in South China. J. Climate, 31, 213–232, doi: 10.1175/JCLI-D-17-0232.1.CrossRefGoogle Scholar
  4. Chen, Y., and P. M. Zhai, 2017: Simultaneous modulations of precipitation and temperature extremes in southern parts of China by the boreal summer intraseasonal oscillation. Climate Dyn., 49, 3363–3381, doi: 10.1007/s00382-016-3518-4.CrossRefGoogle Scholar
  5. Ebisuzaki, W., 1997: A method to estimate the statistical significance of a correlation when the data are serially correlated. J. Climate, 10, 2147–2153, doi: 10.1175/1520-0442(1997)010 <2147:AMTETS>2.0.CO;2.CrossRefGoogle Scholar
  6. Held, I. M., and M. J. Suarez, 1994: A proposal for the intercomparison of the dynamical cores of atmospheric general circulation models. Bull. Amer. Meteor. Soc., 75, 1825–1830, doi: 10.1175/1520-0477(1994)075<1825:APFTIO>2.0.CO;2.CrossRefGoogle Scholar
  7. Hendon, H. H., and M. L. Salby, 1994: The life cycle of the Madden–Julian Oscillation. J. Atmos. Sci., 51, 2225–2237, doi: 10.1175/1520-0469(1994)051<2225:TLCOTM>2.0.CO;2.CrossRefGoogle Scholar
  8. Hoskins, B. J., and D. J. Karoly, 1981: The steady linear response of a spherical atmosphere to thermal and orographic forcing. J. Atmos. Sci., 38, 1179–1196, doi: 10.1175/1520-0469(1981) 038<1179:TSLROA>2.0.CO;2.CrossRefGoogle Scholar
  9. Hsu, P. C., J. Y. Lee, and K. J. Ha, 2016: Influence of boreal summer intraseasonal oscillation on rainfall extremes in southern China. Int. J. Climatol., 36, 1403–1412, doi: 10.1002/joc. 4433.CrossRefGoogle Scholar
  10. Hsu, P. C., J. Y. Lee, K. J. Ha, et al., 2017: Influences of boreal summer intraseasonal oscillation on heat waves in Monsoon Asia. J. Climate, 30, 7191–7211, doi: 10.1175/JCLI-D-16-0505.1.CrossRefGoogle Scholar
  11. Jiang, X. A., T. Li, and B. Wang, 2004: Structures and mechanisms of the northward propagating boreal summer intraseasonal oscillation. J. Climate, 17, 1022–1039, doi: 10.1175/1520-0442(2004)017<1022:SAMOTN>2.0.CO;2.CrossRefGoogle Scholar
  12. Jiang, X. A., and T. Li, 2005: Reinitiation of the boreal summer intraseasonal oscillation in the tropical Indian Ocean. J. Climate, 18, 3777–3795, doi: 10.1175/JCLI3516.1.CrossRefGoogle Scholar
  13. Kemball-Cook, S., and B. Wang, 2001: Equatorial waves and air–sea interaction in the boreal summer intraseasonal oscillation. J. Climate, 14, 2923–2942, doi: 10.1175/1520-0442 (2001)014<2923:EWAASI>2.0.CO;2.CrossRefGoogle Scholar
  14. Krishnamurti, T. N., 1971: Tropical east–west circulations during the northern summer. J. Atmos. Sci., 28, 1342–1347, doi: 10.1175/1520-0469(1971)028<1342:TEWCDT>2.0.CO;2.CrossRefGoogle Scholar
  15. Lau, K. M., and P. H. Chan, 1986: Aspects of the 40–50-day oscillation during the northern summer as inferred from outgoing longwave radiation. Mon. Wea. Rev., 114, 1354–1367, doi: 10.1175/1520-0493(1986)114<1354:AOTDOD>2.0.CO;2.CrossRefGoogle Scholar
  16. Lee, J. Y., B. Wang, M. C. Wheeler, et al., 2013: Real-time multivariate indices for the boreal summer intraseasonal oscillation over the Asian summer monsoon region. Climate Dyn., 40, 493–509, doi: 10.1007/s00382-012-1544-4.CrossRefGoogle Scholar
  17. Li, T., 2006: Origin of the summertime synoptic-scale wave train in the western North Pacific. J. Atmos. Sci., 63, 1093–1102, doi: 10.1175/JAS3676.1.CrossRefGoogle Scholar
  18. Li, T., 2010: Monsoon climate variabilities. Climate Dynamics: Why Does Climate Vary? D. Z. Sun and B. Frank, Eds., American Geophysical Union, Washington, D.C., doi: 10.1029/2008GM000782Google Scholar
  19. Li, T., and B. Wang, 2005: A review on the western North Pacific monsoon: Synoptic-to-interannual variabilities. Terrestrial, Atmospheric and Oceanic Sciences, 16, 285–314, doi: 10.33 19/TAO.2005.16.2.285(A).CrossRefGoogle Scholar
  20. Li, T., and P. C. Hsu, 2017: Fundamentals of Tropical Climate Dynamics. Springer, Cham, doi: 10.1007/978-3-319-59597-9.Google Scholar
  21. Li, T. M., 2014: Recent advance in understanding the dynamics of the Madden–Julian oscillation. J. Meteor. Res., 28, 1–33, doi: 10.1007/s13351-014-3087-6.Google Scholar
  22. Liebmann, B., and C. A. Smith, 1996: Description of a complete (interpolated) outgoing longwave radiation dataset. Bull. Amer. Meteor. Soc., 77, 1275–1277.Google Scholar
  23. Madden, R. A., and P. R. Julian, 1971: Detection of a 40–50 day oscillation in the zonal wind in the tropical Pacific. J. Atmos. Sci., 28, 702–708, doi: 10.1175/1520-0469(1971)028<0702: DOADOI>2.0.CO;2.CrossRefGoogle Scholar
  24. Madden, R. A., and P. R. Julian, 1972: Description of global-scale circulation cells in the tropics with a 40–50 day period. J. Atmos. Sci., 29, 1109–1123, doi: 10.1175/1520-0469(1972)029 <1109:DOGSCC>2.0.CO;2.CrossRefGoogle Scholar
  25. Mao, J. Y., and G. X. Wu, 2006: Intraseasonal variations of the Yangtze rainfall and its related atmospheric circulation features during the 1991 summer. Climate Dyn., 27, 815–830, doi: 10.1007/s00382-006-0164-2.CrossRefGoogle Scholar
  26. Matsueda, S., and Y. Takaya, 2015: The global influence of the Madden–Julian oscillation on extreme temperature events. J. Climate, 28, 4141–4151, doi: 10.1175/JCLI-D-14-00625.1.CrossRefGoogle Scholar
  27. Murakami, T., 1980: Empirical orthogonal function analysis of satellite-observed outgoing longwave radiation during summer. Mon. Wea. Rev., 108, 205–222, doi: 10.1175/1520-0493(1980)108<0205:EOFAOS>2.0.CO;2.CrossRefGoogle Scholar
  28. Ren, B. H., and R. H. Huang, 2002: 10–25-day intraseasonal variations of convection and circulation associated with thermal state of the western Pacific warm pool during boreal summer. Adv. Atmos. Sci., 19, 321–336, doi: 10.1007/s00376-002-0025-9.CrossRefGoogle Scholar
  29. Sun, G. W., F. Xin, B. M. Chen, et al., 2008: A predicting method on the low-frequency synoptic weather map. Plateau Meteor., 27, 64–68. (in Chinese)Google Scholar
  30. Wang, B., R. G. Wu, and T. Li, 2003: Atmosphere–warm Ocean interaction and its impacts on Asian–Australian Monsoon variation. J. Climate, 16, 1195–1211, doi: 10.1175/1520-0442(2003)16<1195:AOIAII>2.0.CO;2.CrossRefGoogle Scholar
  31. Webster, P. J., V. O. Magaña, T. N. Palmer, et al., 1998: Monsoons: Processes, predictability, and the prospects for prediction. J. Geophys. Res., 103, 14451–14510, doi: 10.1029/97JC02719.CrossRefGoogle Scholar
  32. Weickmann, K. M., 1983: Intraseasonal circulation and outgoing longwave radiation modes during Northern Hemisphere winter. Mon. Wea. Rev., 111, 1838–1858, doi: 10.1175/1520-0493(1983)111<1838:ICAOLR>2.0.CO;2.CrossRefGoogle Scholar
  33. Wheeler, M. C., and H. H. Hendon, 2004: An all-season real-time multivariate MJO index: Development of an index for monitoring and prediction. Mon. Wea. Rev., 132, 1917–1932, doi: 10.1175/1520-0493(2004)132<1917:AARMMI>2.0.CO;2.CrossRefGoogle Scholar
  34. Wu, B., T. J. Zhou, and T. Li, 2016: Impacts of the Pacific–Japan and circumglobal teleconnection patterns on the interdecadal variability of the East Asian summer monsoon. J. Climate, 29, 3253–3271, doi: 10.1175/JCLI-D-15-0105.1.CrossRefGoogle Scholar
  35. Yang, J., B. Wang, Q. Bao, et al., 2010: Biweekly and 21–30-day variations of the subtropical summer monsoon rainfall over the lower reach of the Yangtze River basin. J. Climate, 23, 1146–1160, doi: 10.1175/2009JCLI3005.1.CrossRefGoogle Scholar
  36. Yasunari, T., 1979: Cloudiness fluctuations associated with the Northern Hemisphere summer monsoon. J. Meteor. Soc. Japan, 57, 227–242, doi: 10.2151/jmsj1965.57.3_227.CrossRefGoogle Scholar
  37. Zhu, Z. W., and T. Li, 2016: A new paradigm for continental U.S. summer rainfall variability: Asia–North America teleconnection. J. Climate, 29, 7313–7327, doi: 10.1175/JCLI-D-16-0137.1.CrossRefGoogle Scholar
  38. Zhu, Z. W., and T. Li, 2017: The statistical extended-range (10–30-day) forecast of summer rainfall anomalies over the entire China. Climate Dyn., 48, 209–224, doi: 10.1007/s003 82-016-3070-2.CrossRefGoogle Scholar
  39. Zhu, Z. W., T. Li, P. C. Hsu, et al., 2015: A spatial–temporal projection model for extended-range forecast in the tropics. Climate Dyn., 45, 1085–1098, doi: 10.1007/s00382-014-2353-8.CrossRefGoogle Scholar

Copyright information

© The Chinese Meteorological Society and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Key Laboratory of Meteorological Disaster, Ministry of Education/Joint International Research Laboratory of Climate and Environmental Change/Collaborative Innovation Center on Forecast and Evaluation of Meteorological DisastersNanjing University of Information Science &TechnologyNanjingChina
  2. 2.International Pacific Research Center and Department of Atmospheric Sciences, School of Ocean and Earth Science and TechnologyUniversity of HawaiiHonoluluUSA

Personalised recommendations