Advertisement

Journal of Meteorological Research

, Volume 32, Issue 5, pp 829–838 | Cite as

Asymmetric Ridge–Furrow and Film Cover Improves Plant Morphological Traits and Light Utilization in Rain-Fed Maize

  • Wanlin Dong
  • Hang Yu
  • Lizhen Zhang
  • Ruonan Wang
  • Qi Wang
  • Qingwu Xue
  • Zhihua Pan
  • Zhigang Sun
  • Xuebiao Pan
Regular Articles
  • 12 Downloads

Abstract

Light is one of the most important natural resources for plant growth. Light interception (LI) and use efficiency (LUE) are often affected by the structure of canopy caused by growing pattern and agronomy managements. Agronomy practices, such as the ridge–furrow system and plastic film cover, might affect the leaf morphology and then light transmission within the canopy, thus change light extinction coefficient (k), and LI and LUE. The objective of this study is to quantify LI and LUE in rain-fed maize (Zea Mays L.), a major cropping system in Northeast China, under different combinations of ridge–furrow and film covering ratios. The tested ridge–furrow system (DRF: “double ridges and furrows”) was asymmetric and alternated with wide ridge (0.70 m in width and 0.15 m in height), narrow furrow (0.10 m), narrow ridge (0.40 m in width and 0.20 m in height), and narrow furrow (0.10 m). Field experiments were conducted in 2013 and 2014 in Jilin Province, Northeast China. Four treatments were tested: no ridges and plastic film cover (control, NRF), ridges without film cover (DRF0), ridges with 58% film cover (DRF58), and ridges with 100% film cover (DRF100). DRF0 significantly increased LI by 9% compared with NRF, while film cover showed a marginal improvement. Specific leaf area in DRF experiments with film cover was significantly lower than in NRF, and leaf angle was 16% higher than in NRF, resulting in a 4% reduction in k. LUE of maize was not increased by DRF0, but was significantly enhanced by covering film in other DRF experiments, especially by 22% in DRF100. The increase of LUE by film cover was due to a greater biomass production and a lower assimilation portioning to vegetative organs, which caused a higher harvest index. The results could help farmers to optimize maize managements, especially in the region with decreased solar radiation under climate change.

Key words

light interception light use efficiency film mulching plant morphology ridge and furrow cultivation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Almorox, J., and C. Hontoria, 2004: Global solar radiation estima-tion using sunshine duration in Spain. Energ. Convers. Manage., 45, 1529–1535, doi: 10.1016/j.enconman.2003.08.022.CrossRefGoogle Scholar
  2. Bajgain, R., Y. Kawasaki, Y. Akamatsu, et al.,2015: Biomass production and yield of soybean grown under converted paddy fields with excess water during the early growth stage. Field Crop. Res., 180, 221–227, doi: 10.1016/j.fcr.2015.06.010.CrossRefGoogle Scholar
  3. Barbieri, P., H. R. S. Rozas, F. H. Andrade, et al.,2000: Row spacing effects at different levels of nitrogen availability in maize. Agron. J., 92, 283–288, doi: 10.2134/agronj2000.922 283x.CrossRefGoogle Scholar
  4. Cai, Q., Y. L. Zhang, Z. X. Sun, et al.,2017: Morphological plasticity of root growth under mild water stress increases water use efficiency without reducing yield in maize. Biogeosciences, 14, 3851–3858, doi: 10.5194/bg-14-3851-2017.CrossRefGoogle Scholar
  5. Chen, C. Q., C. R. Qian, A. X. Deng, et al.,2012: Progressive and active adaptations of cropping system to climate change in Northeast China. Eur. J. Agron., 38, 94–103, doi: 10.1016/j.eja.2011.07.003.CrossRefGoogle Scholar
  6. Ding, R. S., S. Z. Kang, F. S. Li, et al.,2013: Evapotranspiration measurement and estimation using modified Priestley–Taylor model in an irrigated maize field with mulching. Agric. Forest Meteor., 168, 140–148, doi: 10.1016/j.agrformet.2012. 08.003.CrossRefGoogle Scholar
  7. Dong, W. L., L. Z. Zhang, Y. Duan, et al.,2017: Ridge and furrow systems with film cover increase maize yields and mitigate climate risks of cold and drought stress in continental climates. Field Crop. Res., 207, 71–78, doi: 10.1016/j.fcr.2017. 03.003.CrossRefGoogle Scholar
  8. Dreccer, M. F., A. H. C. M. Schapendonk, G. A. Slafer, et al.,2000: Comparative response of wheat and oilseed rape to nitrogen supply: Absorption and utilisation efficiency of radiation and nitrogen during the reproductive stages determining yield. Plant Soil, 220, 189–205, doi: 10.1023/A:1004757124 939.CrossRefGoogle Scholar
  9. Eldoma, I. M., M. Li, F. Zhang, et al.,2016: Alternate or equal ridge–furrow pattern: Which is better for maize production in the rain-fed semi-arid Loess Plateau of China? Field Crop Res., 191, 131–138, doi: 10.1016/j.fcr.2016.02.024.CrossRefGoogle Scholar
  10. Fan, L. J., D. L. Chen, C. B. Fu, et al.,2013: Statistical downscaling of summer temperature extremes in northern China. Adv. Atmos. Sci., 30, 1085–1095, doi: 10.1007/s00376-012-2057-0.CrossRefGoogle Scholar
  11. Fan, Y. Q., R. S. Ding, S. Z. Kang, et al.,2017: Plastic mulch decreases available energy and evapotranspiration and improves yield and water use efficiency in an irrigated maize cropland. Agric. Water Manage., 179, 122–131, doi: 10.1016/j.agwat.2016.08.019.CrossRefGoogle Scholar
  12. Flénet, F., J. R. Kiniry, J. E. Board, et al.,1996: Row spacing effects on light extinction coefficients of corn, sorghum, soybean, and sunflower. Agron. J., 88, 185–190, doi: 10.2134/agronj1996.00021962008800020011x.CrossRefGoogle Scholar
  13. French, R. J., and N. C. Turner, 1991: Water deficits change dry matter partitioning and seed yield in narrow-leafed lupins (Lupinus angustifolius L.). Aust. J. Agric. Res., 42, 471–484, doi: 10.1071/ar9910471.CrossRefGoogle Scholar
  14. Gao, Y. H., Y. P. Xie, H. Y. Jiang, et al.,2014: Soil water status and root distribution across the rooting zone in maize with plastic film mulching. Field Crop. Res., 156, 40–47, doi: 10.1016/j.fcr.2013.10.016.CrossRefGoogle Scholar
  15. Gosar, B., A. Tajnšek, A. Udovč, et al.,2010: Evaluating a new ridge and furrow rainfall harvesting system with two types of mulches. Irrig. Drain., 59, 356–364, doi: 10.1002/ird.468.CrossRefGoogle Scholar
  16. Han, H., Z. Li, T. Ning, et al.,2008: Radiation use efficiency and yield of winter wheat under deficit irrigation in North China. Plant Soil Environ., 54, 313–319, doi: 10.17221/421-PSE.CrossRefGoogle Scholar
  17. Hirose, T., and M. J. A. Werger, 1995: Canopy structure and photon flux partitioning among species in a herbaceous plant community. Ecology, 76, 466–474, doi: 10.2307/1941205.CrossRefGoogle Scholar
  18. Hu, Q., F. F. Pan, X. B. Pan, et al.,2014: Effects of a ridge–furrow micro-field rainwater-harvesting system on potato yield in a semi-arid region. Field Crop. Res., 166, 92–101, doi: 10.1016/j.fcr.2014.06.005.CrossRefGoogle Scholar
  19. Idinoba, M. E., P. A. Idinoba, and A. S. Gbadegesin, 2002: Radiation interception and its efficiency for dry matter production in three crop speciesin the transitional humid zone of Nigeria. Agronomie, 22, 273–281, doi: 10.1051/agro:2001007.CrossRefGoogle Scholar
  20. Jia, Q. M., L. F. Sun, H. Y. Mou, et al.,2018: Effects of planting patterns and sowing densities on grain-filling, radiation use efficiency and yield of maize (Zea mays L.) in semi-arid regions. Agric. Water Manage., 201, 287–298, doi: 10.1016/j.a gwat.2017.11.025.CrossRefGoogle Scholar
  21. Konôpka, B., J. Pajtík, R. Marušák, et al.,2016: Specific leaf area and leaf area index in developing stands of Fagus sylvatica L. and Picea abies Karst. Forest Ecol. Manage., 364, 52–59, doi: 10.1016/j.foreco.2015.12.005.CrossRefGoogle Scholar
  22. Ku, L. X., Z. Z. Ren, X. Chen, et al.,2016: Genetic analysis of leaf morphology underlying the plant density response by QTL mapping in maize (Zea mays L.). Mol. Breed., 36, 63, doi: 10.1007/s11032-016-0483-x.CrossRefGoogle Scholar
  23. Li, J., W. J. Dong, and Z. W. Yan, 2012: Changes of climate extremes of temperature and precipitation in summer in eastern China associated with changes in atmospheric circulation in East Asia during 1960–2008. Chinese Sci. Bull., 57, 1856–1861, doi: 10.1007/s11434-012-4989-2.CrossRefGoogle Scholar
  24. Li, R., X. Q. Hou, Z. K. Jia, et al.,2013: Effects on soil temperature, moisture, and maize yield of cultivation with ridge and furrow mulching in the rainfed area of the Loess Plateau, China. Agric. Water Manage., 116, 101–109, doi: 10.1016/j.agwat.2012.10.001.CrossRefGoogle Scholar
  25. Lindquist, J. L., T. J. Arkebauer, D. T. Walters, et al.,2005: Maize radiation use efficiency under optimal growth conditions. Agron. J., 97, 72–78, doi: 10.2134/agronj2005.0072.CrossRefGoogle Scholar
  26. Liu, F. D., W. J. Yang, Z. S. Wang, et al.,2010: Plant size effects on the relationships among specific leaf area, leaf nutrient content, and photosynthetic capacity in tropical woody species. Acta Oecologica, 36, 149–159, doi: 10.1016/j.actao. 2009.11.004.CrossRefGoogle Scholar
  27. Liu, X. E., X. G. Li, L. Hai, et al.,2014: How efficient is film fully-mulched ridge–furrow cropping to conserve rainfall in soil at a rainfed site? Field Crop. Res., 169, 107–115, doi: 10.1016/j.fcr.2014.09.014.Google Scholar
  28. Liu, Y., S. J. Yang, S. Q. Li, et al.,2010: Growth and development of maize (Zea mays L.) in response to different field water management practices: Resource capture and use efficiency. Agric. Forest Meteor., 150, 606–613, doi: 10.1016/j.a grformet.2010.02.003.CrossRefGoogle Scholar
  29. Liu, Z. J., X. G. Yang, K. G. Hubbard, et al.,2012: Maize potential yields and yield gaps in the changing climate of Northeast China. Glob. Chang. Biol., 18, 3441–3454, doi: 10.1111/j.1365-2486.2012.02774.x.CrossRefGoogle Scholar
  30. Marcelis, L. F. M., A. Elings, M. J. Bakker, et al.,2006: Modelling dry matter production and partitioning in sweet pepper. Acta Hortic., 718, 121–128, doi: 10.17660/ActaHortic.2006. 718.13.CrossRefGoogle Scholar
  31. Mattera, J., L. A. Romero, A. L. Cuatrín, et al.,2013: Yield components, light interception and radiation use efficiency of Lucerne (Medicago sativa L.) in response to row spacing. Eur. J. Agron., 45, 87–95, doi: 10.1016/j.eja.2012.10.008.CrossRefGoogle Scholar
  32. McKee, G. W., 1964: A coefficient for computing leaf area in hybrid corn. Agron. J., 56, 240–241, doi: 10.2134/agronj1964.0002 1962005600020038x.CrossRefGoogle Scholar
  33. Monsi, M., and T. Saeki, 1953: Uber den Lichtfaktor in den pflanzengesell schaften und seine bedeutung fur die Stoffproduktion. Jap. J. Bot., 14, 22–52.Google Scholar
  34. Monteith, J. L., 1977: Climate and the efficiency of crop production in Britain. Philos. Trans. Roy. Soci. Ser. B: Biol. Sci., 281, 277–294, doi: 10.1098/rstb.1977.0140.CrossRefGoogle Scholar
  35. Niinemets, Ü., D. S. Ellsworth, A. Lukjanova, et al.,2001: Site fertility and the morphological and photosynthetic acclimation of Pinus sylvestris needles to light. Tree Physiol., 21, 1231–1244, doi: 10.1093/treephys/21.17.1231.CrossRefGoogle Scholar
  36. Oebker, N. F., and H. J. Hopen, 1974: Microclimate modification and the vegetable crop ecosystem. HortScience, 9, 564–568.Google Scholar
  37. Piao, S. L., P. Ciais, Y. Huang, et al.,2010: The impact of climate change on water resources and agriculture in China. Nature, 467, 43–51, doi: 10.1038/nature09364.CrossRefGoogle Scholar
  38. Pierce, L. L., S. W. Running, and J. Walker, 1994: Regional-scale relationships of leaf area index to specific leaf area and leaf nitrogen content. Ecol. Appl., 4, 313–321, doi: 10.2307/194 1936.CrossRefGoogle Scholar
  39. Qin, S. H., J. L. Zhang, H. L. Dai, et al.,2014: Effect of ridge–furrow and plastic-mulching planting patterns on yield formation and water movement of potato in a semi-arid area. Agric. Water Manage., 131, 87–94, doi: 10.1016/j.agwat.2013.09. 015.CrossRefGoogle Scholar
  40. Salah, H. B. H, and F. Tardieu, 1997: Control of leaf expansion rate of droughted maize plants under fluctuating evaporative demand (a superposition of hydraulic and chemical messages?) Plant Physiol., 114, 893–900, doi: 10.1104/pp.114. 3.893.CrossRefGoogle Scholar
  41. Sinclair, T. R., and T. Horie, 1989: Leaf nitrogen, photosynthesis, and crop radiation use efficiency: A review. Crop Sci., 29, 90–98, doi: 10.2135/cropsci1989.0011183X002900010023x.CrossRefGoogle Scholar
  42. Sinclair, T. R., and R. C. Muchow, 1999: Radiation use efficiency. Adv. Agron., 65, 215–265.CrossRefGoogle Scholar
  43. Tadesse, M., W. J. M. Lommen, and P. C. Struik, 2001: Effects of nitrogen pre-treatment of transplants from in vitro produced potato plantlets on transplant growth and yield in the field. NJAS, 49, 67–79, doi: 10.1016/S1573-5214(01)80016-6.Google Scholar
  44. Valladares, F., J. B. Skillman, and R. W. Pearcy, 2002: Convergence in light capture efficiencies among tropical forest understory plants with contrasting crown architectures: A case of morphological compensation. Am. J. Bot., 89, 1275–1284, doi: 10.3732/ajb.89.8.1275.CrossRefGoogle Scholar
  45. Vieira, M. I., M. E. Ferreira, and J. P. de Melo-Abreu, 2004: Above-ground assimilate partition in bell pepper (Capsicum annuum L.) for processing under Mediterranean conditions. Acta Hortic., 654, 221–227, doi: 10.17660/ActaHortic.2004. 654.24.CrossRefGoogle Scholar
  46. Wang, H. W., Q. J. Liang, K. Li, et al.,2017: QTL analysis of ear leaf traits in maize (Zea mays L.) under different planting densities. Crop J., 5, 387–395, doi: 10.1016/j.cj.2017.05.001.CrossRefGoogle Scholar
  47. Wang, N., D. Cao, F. P. Gong, et al.,2015: Differences in properties and proteomes of the midribs contribute to the size of the leaf angle in two near-isogenic maize lines. J. Proteomics, 128, 113–122, doi: 10.1016/j.jprot.2015.07.027.CrossRefGoogle Scholar
  48. Wang, X. B., K. Dai, D. C. Zhang, et al.,2011: Dryland maize yields and water use efficiency in response to tillage/crop stubble and nutrient management practices in China. Field Crop. Res., 120, 47–57, doi: 10.1016/j.fcr.2010.08.010.CrossRefGoogle Scholar
  49. Wang, X. K., Z. B. Li, and Y. Y. Xing, 2015: Effects of mulching and nitrogen on soil temperature, water content, nitrate-N content and maize yield in the Loess Plateau of China. Agric. Water Manage., 161, 53–64, doi: 10.1016/j.agwat.2015.07. 019.CrossRefGoogle Scholar
  50. White, J. D., and N. A. Scott, 2006: Specific leaf area and nitrogen distribution in New Zealand forests: Species independently respond to intercepted light. Forest Ecol. Manage., 226, 319–329, doi: 10.1016/j.foreco.2006.02.001.CrossRefGoogle Scholar
  51. Willey, R. W., 1990: Resource use in intercropping systems. Agric. Water Manage., 17, 215–231, doi: 10.1016/0378-3774 (90)90069-B.CrossRefGoogle Scholar
  52. Yang, H. S., A. Dobermann, J. L. Lindquist, et al.,2004: Hybridmaize— a maize simulation model that combines two crop modeling approaches. Field Crop. Res., 87, 131–154, doi: 10.1016/j.fcr.2003.10.003.CrossRefGoogle Scholar
  53. Zaffaroni, E., and A. A. Schneiter, 1989: Water-use efficiency and light interception of semidwarf and standard-height sunflower hybrids grown in different row arrangements. Agron. J., 81, 831–836, doi: 10.2134/agronj1989.0002196200810005 0026x.CrossRefGoogle Scholar
  54. Zhang, F., W. J. Zhang, J. G. Qi, et al.,2018: A regional evaluation of plastic film mulching for improving crop yields on the Loess Plateau of China. Agric. Forest Meteor., 248, 458–468, doi: 10.1016/j.agrformet.2017.10.030.CrossRefGoogle Scholar
  55. Zhang, Q., J. Q. Zhang, and C. Y. Wang, 2016: Risk assessment of drought disaster in typical area of corn cultivation in China. Theor. Appl. Climatol., 128, 533–540, doi: 10.1007/s00704-015-1723-4.CrossRefGoogle Scholar
  56. Zhao, H., Y. C. Xiong, F. M. Li, et al.,2012: Plastic film mulch for half growing-season maximized WUE and yield of potato via moisture-temperature improvement in a semi-arid agroecosystem. Agric. Water Manage., 104, 68–78, doi: 10.1016/j.agwat.2011.11.016.CrossRefGoogle Scholar
  57. Zhou, L., F. M. Li, S. L. Jin, et al.,2009: How two ridges and the furrow mulched with plastic film affect soil water, soil temperature and yield of maize on the semiarid Loess Plateau of China. Field Crop. Res., 113, 41–47, doi: 10.1016/j.fcr.2009. 04.005.CrossRefGoogle Scholar
  58. Zhu, X. D., H. L. He, M. Liu, et al.,2010: Spatio-temporal variation of photosynthetically active radiation in China in recent 50 years. J. Geogr. Sci., 20, 803–817, doi: 10.1007/s11442-010-0812-7.CrossRefGoogle Scholar

Copyright information

© The Chinese Meteorological Society and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Wanlin Dong
    • 1
    • 2
    • 3
  • Hang Yu
    • 6
  • Lizhen Zhang
    • 2
    • 5
  • Ruonan Wang
    • 2
    • 5
  • Qi Wang
    • 2
    • 5
  • Qingwu Xue
    • 7
  • Zhihua Pan
    • 2
    • 5
  • Zhigang Sun
    • 1
    • 4
  • Xuebiao Pan
    • 2
    • 5
  1. 1.Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources ResearchChinese Academy of SciencesBeijingChina
  2. 2.Agricultural Meteorological Department, College of Resources and Environmental SciencesChina Agricultural UniversityBeijingChina
  3. 3.China Meteorological Administration Training CentreBeijingChina
  4. 4.College of Resources and EnvironmentUniversity of Chinese Academy of SciencesBeijingChina
  5. 5.Wuchuan Scientific and Observing Experimental Station of Agro-EnvironmentMinistry of Agriculture and Rural AffairsHohhotChina
  6. 6.Yushu Meteorological Service of Jilin ProvinceChangchunChina
  7. 7.Texas A&M AgriLife Research and ExtensionAmarilloUSA

Personalised recommendations