Journal of Meteorological Research

, Volume 32, Issue 5, pp 693–706 | Cite as

Sensitivity Study of Anthropogenic Aerosol Indirect Forcing through Cirrus Clouds with CAM5 Using Three Ice Nucleation Parameterizations

  • Xiangjun Shi
  • Xiaohong Liu
Special Collection on Aerosol-Cloud-Radiation Interactions


Quantifying the radiative forcing due to aerosol–cloud interactions especially through cirrus clouds remains challenging because of our limited understanding of aerosol and cloud processes. In this study, we investigate the anthropogenic aerosol indirect forcing (AIF) through cirrus clouds using the Community Atmosphere Model version 5 (CAM5) with a state-of-the-art treatment of ice nucleation. We adopt a new approach to isolate anthropogenic AIF through cirrus clouds in which ice nucleation parameterization is driven by prescribed pre-industrial (PI) and presentday (PD) aerosols, respectively. Sensitivities of anthropogenic ice AIF (i.e., anthropogenic AIF through cirrus clouds) to different ice nucleation parameterizations, homogeneous freezing occurrence, and uncertainties in the cloud microphysics scheme are investigated. Results of sensitivity experiments show that the change (PD minus PI) in global annual mean longwave cloud forcing (i.e., longwave anthropogenic ice AIF) ranges from 0.14 to 0.35 W m–2, the change in global annual mean shortwave cloud forcing (i.e., shortwave anthropogenic ice AIF) from–0.47 to–0.20 W m–2, and the change in net cloud forcing from–0.12 to 0.05 W m–2. Our results suggest that different ice nucleation parameterizations are an important factor for the large uncertainty of anthropogenic ice AIF. Furthermore, improved understanding of the spatial and temporal occurrence characteristics of homogeneous freezing events and the mean states of cirrus cloud properties are also important for constraining anthropogenic ice AIF.

Key words

aerosol indirect forcing cirrus clouds CAM5 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



We thank Kai Zhang for his assistance with prescribed aerosol code.


  1. Barahona, D., and A. Nenes, 2009: Parameterizing the competition between homogeneous and heterogeneous freezing in cirrus cloud formation–monodisperse ice nuclei. Atmos. Chem. Phys., 9, 369–381, doi: 10.5194/acp-9-369-2009.CrossRefGoogle Scholar
  2. Barahona, D., A. Molod, J. Bacmeister, et al.,2014: Development of two-moment cloud microphysics for liquid and ice within the NASA Goddard Earth Observing System Model (GEOS-5). Geosci. Model Dev., 7, 1733–1766, doi: 10.5194/gmd-7-1733-2014.CrossRefGoogle Scholar
  3. Boucher, O., D. Randall, P. Artaxo, et al.,2013: Clouds and aerosols. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. T. F. Stocker, D. Qin, G. K. Plattner, et al., Eds., Cambridge University Press, Cambridge, United Kingdom, New York, NY, USA, 571–658.Google Scholar
  4. Carslaw, K. S., L. A. Lee, C. L. Reddington, et al.,2013: Large contribution of natural aerosols to uncertainty in indirect forcing. Nature, 503, 67–71, doi: 10.1038/nature12674.CrossRefGoogle Scholar
  5. Cziczo, D. J., K. D. Froyd, C. Hoose, et al.,2013: Clarifying the dominant sources and mechanisms of cirrus cloud formation. Science, 340, 1320–1324, doi: 10.1126/science.1234145.CrossRefGoogle Scholar
  6. Eidhammer, T., H. Morrison, D. Mitchell, et al.,2017: Improvements in global climate model microphysics using a consistent representation of ice particle properties. J. Climate, 30, 609–629, doi: 10.1175/jcli-d-16-0050.1.CrossRefGoogle Scholar
  7. Field, P. R., A. J. Heymsfield, and A. Bansemer, 2006: Shattering and particle interarrival times measured by optical array probes in ice clouds. J. Atmos. Oceanic Technol., 23, 1357–1371, doi: 10.1175/JTECH1922.1.CrossRefGoogle Scholar
  8. Gettelman, A., X. Liu, S. J. Ghan, et al.,2010: Global simulations of ice nucleation and ice supersaturation with an improved cloud scheme in the Community Atmosphere Model. J. Geophys. Res., 115, D18216, doi: 10.1029/2009jd013797.CrossRefGoogle Scholar
  9. Gettelman, A., X. Liu, D. Barahona, et al.,2012: Climate impacts of ice nucleation. J. Geophys. Res. Atmos., 117, D20201, doi: 10.1029/2012jd017950.CrossRefGoogle Scholar
  10. Heymsfield, A. J., A. Bansemer, P. R. Field, et al.,2002: Observations and parameterizations of particle size distributions in deep tropical cirrus and stratiform precipitating clouds: Results from in situ observations in TRMM field campaigns. J. Atmos. Sci., 59, 3457–3491, doi: 10.1175/1520-0469(2002) 059<3457:oapops>;2.CrossRefGoogle Scholar
  11. Jensen, E. J., L. Pfister, T. P. Bui, et al.,2010: Ice nucleation and cloud microphysical properties in tropical tropopause layer cirrus. Atmos. Chem. Phys., 10, 1369–1384, doi: 10.5194/acp-10-1369-2010.CrossRefGoogle Scholar
  12. Kärcher, B., J. Hendricks, and U. Lohmann, 2006: Physically based parameterization of cirrus cloud formation for use in global atmospheric models. J. Geophys. Res. Atmos., 111, D01205, doi: 10.1029/2005JD006219.CrossRefGoogle Scholar
  13. Khain, A. P., K. D. Beheng, A. Heymsfield, et al.,2015: Representation of microphysical processes in cloud-resolving models: Spectral (bin) microphysics versus bulk parameterization. Rev. Geophys., 53, 247–322, doi: 10.1002/2014RG000468.CrossRefGoogle Scholar
  14. Kiehl, J. T., and K. E. Trenberth, 1997: Earth’s annual global mean energy budget. Bull. Amer. Meteor. Soc., 78, 197–208, doi: 10.1175/1520-0477(1997)078<0197:EAGMEB>2.0.CO;2.CrossRefGoogle Scholar
  15. Krämer, M., C. Schiller, A. Afchine, et al.,2009: Ice supersaturations and cirrus cloud crystal numbers. Atmos. Chem. Phys., 9, 3505–3522, doi: 10.5194/acp-9-3505-2009.CrossRefGoogle Scholar
  16. Lawson, R. P., 2011: Effects of ice particles shattering on optical cloud particle probes. Atmos. Meas. Tech. Discuss., 4, 939–968, doi: 10.5194/amtd-4-939-2011.CrossRefGoogle Scholar
  17. Li, J.-L. F., D. E. Waliser, W. T. Chen, et al.,2012: An observationally based evaluation of cloud ice water in CMIP3 and CMIP5 GCMs and contemporary reanalyses using contemporary satellite data. J. Geophys. Res. Atmos., 117, D16105, doi: 10.1029/2012JD017640.Google Scholar
  18. Liu, X., and J. E. Penner, 2005: Ice nucleation parameterization for global models. Meteor. Z., 14, 499–514, doi: 10.1127/0941-2948/2005/0059.CrossRefGoogle Scholar
  19. Liu, X., and X. Shi, 2018: Sensitivity of homogeneous ice nucleation to aerosol perturbations and its implications for aerosol indirect effects through cirrus clouds. Geophys. Res. Lett., 45, 1684–1691, doi: 10.1002/2017GL076721.CrossRefGoogle Scholar
  20. Liu, X., J. E. Penner, S. J. Ghan, et al.,2007: Inclusion of ice microphysics in the NCAR community atmospheric model version 3 (CAM3). J. Climate, 20, 4526–4547, doi: 10.1175/Jcli4264.1.CrossRefGoogle Scholar
  21. Liu, X., R. C. Easter, S. J. Ghan, et al.,2012: Toward a minimal representation of aerosols in climate models: Description and evaluation in the Community Atmosphere Model CAM5. Geosci. Model Dev., 5, 709–739, doi: 10.5194/gmd-5-709-2012.CrossRefGoogle Scholar
  22. Loeb, N. G., B. A. Wielicki, D. R. Doelling, et al.,2009: Toward optimal closure of the earth’s top-of-atmosphere radiation budget. J. Climate, 22, 748–766, doi: 10.1175/2008jcli 2637.1.CrossRefGoogle Scholar
  23. Morrison, H., and W. W. Grabowski, 2008: A novel approach for representing ice microphysics in models: Description and tests using a kinematic framework. J. Atmos. Sci., 65, 1528–1548, doi: 10.1175/2007jas2491.1.CrossRefGoogle Scholar
  24. Morrison, H., and A. Gettelman, 2008: A new two-moment bulk stratiform cloud microphysics scheme in the community atmosphere model, version 3 (CAM3). Part I: Description and numerical tests. J. Climate, 21, 3642–3659, doi: 10.1175/2008jcli2105.1.Google Scholar
  25. Murray, B. J., T. W. Wilson, S. Dobbie, et al.,2010: Heterogeneous nucleation of ice particles on glassy aerosols under cirrus conditions. Nat. Geosci., 3, 233–237, doi: 10.1038/ngeo 817.CrossRefGoogle Scholar
  26. Myhre, G., B. H. Samset, M. Schulz, et al.,2013: Radiative forcing of the direct aerosol effect from AeroCom Phase II simulations. Atmos. Chem. Phys., 13, 1853–1877, doi: 10.5194/acp-13-1853-2013.CrossRefGoogle Scholar
  27. Neale, R. B., A. Gettelman, S. Park, et al.,2012: Description of the NCAR Community Atmosphere Model (CAM 5.0). Climate and Global Dynamics Division, National Center for Atmospheric Research, Boulder, Colorado, USA.Google Scholar
  28. Penner, J. E., C. Zhou, and X. H. Liu, 2015: Can cirrus cloud seed-ing be used for geoengineering? Geophys Res. Lett., 42, 8775–8782, doi: 10.1002/2015gl065992.CrossRefGoogle Scholar
  29. Rossow, W. B., and R. A. Schiffer, 1999: Advances in understanding clouds from ISCCP. Bull. Amer. Meteor. Soc., 80, 2261–2288, doi: 10.1175/1520-0477(1999)080<2261:aiucfi>;2.CrossRefGoogle Scholar
  30. Seinfeld, J. H., C. Bretherton, K. S. Carslaw, et al.,2016: Improving our fundamental understanding of the role of aerosol–cloud interactions in the climate system. Proc. Natl. Acad. Sci. USA, 113, 5781–5790, doi: 10.1073/pnas.1514043113.CrossRefGoogle Scholar
  31. Shi, X., and X. Liu, 2016: Effect of cloud-scale vertical velocity on the contribution of homogeneous nucleation to cirrus formation and radiative forcing. Geophys. Res. Lett., 43, 6588–6595, doi: 10.1002/2016gl069531.CrossRefGoogle Scholar
  32. Shi, X., X. Liu, and K. Zhang, 2015: Effects of pre-existing ice crystals on cirrus clouds and comparison between different ice nucleation parameterizations with the Community Atmosphere Model (CAM5). Atmos. Chem. Phys., 15, 1503–1520, doi: 10.5194/acp-15-1503-2015.CrossRefGoogle Scholar
  33. Spichtinger, P., and K. M. Gierens, 2009: Modelling of cirrus clouds—Part 2: Competition of different nucleation mechanisms. Atmos. Chem. Phys., 9, 2319–2334, doi: 10.5194/acp-9-2319-2009.CrossRefGoogle Scholar
  34. Wielicki, B. A., B. R. Barkstrom, E. F. Harrison, et al.,1996: Clouds and the earth’s radiant energy system (CERES): An earth observing system experiment. Bull. Amer. Meteor. Soc., 77, 853–868, doi: 10.1175/1520-0477(1996)077<0853:CATE RE>2.0.CO;2.CrossRefGoogle Scholar
  35. Zhang, K., X. H. Liu, J. H. Yoon, et al.,2013a: Assessing aerosol indirect effect through ice clouds in CAM5. AIP Conf. Proc., 1527, 751, doi: 10.1063/1.4803379.CrossRefGoogle Scholar
  36. Zhang, K., X. Liu, M. Wang, et al.,2013b: Evaluating and constraining ice cloud parameterizations in CAM5 using aircraft measurements from the SPARTICUS campaign. Atmos. Chem. Phys., 13, 4963–4982, doi: 10.5194/acp-13-4963-2013.CrossRefGoogle Scholar

Copyright information

© The Chinese Meteorological Society and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Earth System Modeling Center and School of Atmospheric SciencesNanjing University of Information Science &TechnologyNanjingChina
  2. 2.Department of Atmospheric ScienceUniversity of WyomingLaramieUSA
  3. 3.Institute of Atmospheric PhysicsChinese Academy of SciencesBeijingChina

Personalised recommendations