Journal of Meteorological Research

, Volume 32, Issue 4, pp 612–626 | Cite as

Study of a Horizontal Shear Line over the Qinghai–Tibetan Plateau and the Impact of Diabatic Heating on Its Evolution

  • Qin Guan
  • Xiuping Yao
  • Qingping Li
  • Yuancang Ma
  • Honghua Zhang


Based on the 4 times daily 0.75° × 0.75° ERA-Interim data, the structural evolution of a Qinghai–Tibetan Plateau horizontal (east–west-oriented) shear line (TSL) during 15–19 August 2015 and the effect of diabatic heating on its evolution were analyzed. The results show that the TSL possessed a vertical thickness of up to 1.5 km (approximately 600–450 hPa), and was baroclinic in nature. Weak ascending motions occurred near the TSL, accompanied with more significant gradients in dew point temperature than in temperature. The TSL was characterized by diurnal variations in its appearance and structure. It was relatively full in shape (broken) and was the lowest (highest) in vertical extent at 0000 (1800) UTC, and veered clockwise (anticlockwise) during 0000–0600 (1200–1800) UTC. When the north–south span of the TSL increased, it was prone to fracturing; and it disappeared when the dew point temperature gradients to its either side decreased. When the TSL moved northward (southward), its western (eastern) section broke up, while the eastern (western) section inclined to regenerate or merge. The TSL tended to move towards the positive vorticity areas with significant increases in vorticity. When the positive vorticity center moved down, the height of TSL decreased. Further analysis shows that the plateau surface heating dominated the vorticity attribute of the TSL and its movement, with different contributions from local variation, horizontal advection, and vertical advection of the diabatic heating to the TSL at different heights.

Key words

plateau shear line structure evolution diabatic heating 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bai, L., W. X. Wang, Y. N. Yao, et al., 2013: Reliability of NCEP/NCAR and ERA-Interim reanalysis data on Tianshan mountainous area. Desert Oasis Meteor., 7, 51–56, doi: 10.3969/j.issn.1002-0799.2013.03.012. (in Chinese)Google Scholar
  2. Benjamin, S. G., 1986: Some effects of surface heating and topography on the regional severe storm environment. Part II: Two-dimensional idealized experiments. Mon. Wea. Rev., 114, 330–343, doi: 10.1175/1520-0493(1986)114<0330:SEOSHA> 2.0.CO;2.Google Scholar
  3. Chen, Z. M., G. B. He, and W. B. Min, 2006: Another expression of the complete form of vertical vorticity tendency equation. Scientia Meteor. Sinica, 26, 365–369, doi: 10.3969/j.issn. 1009–0827.2006.04.002. (in Chinese)Google Scholar
  4. Demko, J. C., and B. Geerts, 2010a: A numerical study of the evolving convective boundary layer and orographic circulation around the Santa Catalina mountains in Arizona. Part I: Circulation without deep convection. Mon. Wea. Rev., 138, 1902–1922, doi: 10.1175/2009MWR3098.1.Google Scholar
  5. Demko, J. C., and B. Geerts, 2010b: A numerical study of the evolving convective boundary layer and orographic circulation around the Santa Catalina mountains in Arizona. Part II: Interaction with deep convection. Mon. Wea. Rev., 138, 3603–3622, doi: 10.1175/2010MWR3318.1.Google Scholar
  6. He, G. B., 2013: Review of the plateau shear-line studies. Plateau Mt. Meteor. Res., 33, 90–96, doi: 10.3969/j.issn.1674-2184. 2013.01.016. (in Chinese)Google Scholar
  7. He, G. B., and R. Shi, 2011: Studies on dynamic and thermal characteristics of different shear lines over the Tibetan Plateau in summer. Plateau Meteor., 30, 568–575. (in Chinese)Google Scholar
  8. He, G. B., W. L. Gao, and N. N. Tu, 2009: Observational analysis of shear lines and low vortexes over the Tibetan Plateau in summer from 2000 to 2007. Plateau Meteor., 28, 549–555. (in Chinese)Google Scholar
  9. Kuo, Y. H., L. S. Cheng, and R. A. Anthes, 1986: Mesoscale analyses of the Sichuan flood catastrophe, 11–15 July 1981. Mon. Wea. Rev., 114, 1984–2003, doi: 10.1175/1520-0493(1986)114<1984:MAOTSF>2.0.CO;2.CrossRefGoogle Scholar
  10. Li, G. P., 2007: Dynamic Meteorology of the Tibetan Plateau. China Meteorological Press, Beijing, 26 pp. (in Chinese)Google Scholar
  11. Li, Y. L., 1978: Analysis of cloud picture for weather over the Tibetan Plateau. Meteor. Mon., (4), 10–12. (in Chinese)Google Scholar
  12. Liu, F. M., and P. S. Pan, 1987: A study on the southward-moving shear lines with quasi E–W orientation over the Qinghai–Xizang Plateau. Plateau Meteor., 6, 56–64. (in Chinese)Google Scholar
  13. Luo, H. B., and M. Yanai, 1983: The large-scale circulation and heat sources over the Tibetan Plateau and surrounding areas during the early summer of 1979. Part I: Precipitation and kinematic analyses. Mon. Wea. Rev., 111, 922–944, doi: 10.1175/1520-0493(1983)111<0922:TLSCAH>2.0.CO;2.Google Scholar
  14. Luo, H. B., and M. Yanai, 1984: The large-scale circulation and heat sources over the Tibetan Plateau and surrounding areas during the early summer of 1979. Part II: Heat and moisture budgets. Mon. Wea. Rev., 112, 966–989, doi: 10.1175/1520-0493(1984)112<0966:TLSCAH>2.0.CO;2.Google Scholar
  15. Luo, S. W., 1963: Analysis of the formation of shear lines on the east side of the Qinghai–Xizang Plateau in winter. Acta Meteor. Sinica, 33, 305–319, doi: 10.11676/qxxb1963.029. (in Chinese)Google Scholar
  16. Ma, L., Q. M. Zhang, C. N. Zhao, et al., 2003: Formation and forecast of spring snow-related disasterous weather in the eastern pasture area of the Qinghai–Xizang Plateau. J. Nat. Disast., 12, 61–68, doi: 10.3969/j.issn.1004-4574.2003.03.010. (in Chinese)Google Scholar
  17. Qiao, Q. M., and H. Q. Tan, 1984: The structure of a 500-mb shear line and large-scale circulation over the Qingzang Plateau in summer. Plateau Meteor., 3, 50–57. (in Chinese)Google Scholar
  18. Qinghai–Tibetan Plateau (QTP) Meteorological Research Collaborative Group, 1981: Vortexes and Shear Lines at 500 hPa over the Qinghai–Tibetan Plateau in Summer. Science Press, Beijing, 1–122. (in Chinese)Google Scholar
  19. Shi, R., and G. B. He, 2011: Contrast analysis on background circulation of plateau shear lines moving out and not moving out of the Tibetan Plateau. Plateau Meteor., 30, 1453–1461. (in Chinese)Google Scholar
  20. Tao, S. Y., S. W. Luo, and H. C. Zhang, 1984: The meteorological science experiment and observation system over the Tibetan Plateau from May to August in 1979. Meteor. Mon., (7), 2–5. (in Chinese)Google Scholar
  21. Wang, W., and L. S. Cheng, 2000: Numerical study of conditional symmetric instability of the “96.1” snowstorm. Plateau Meteor., 19, 129–140, doi: 10.3321/j.issn:1000-0534.2000.02.001. (in Chinese)Google Scholar
  22. Wang, W., and L. S. Cheng, 2002: Numerical study on three-dimensional conditionally symmetric instability of the “96.1” snowstorm. Plateau Meteor., 21, 225–232, doi: 10.3321/j.issn: 1000–0534.2002.03.001. (in Chinese)Google Scholar
  23. Wu, G. X., and H. Z. Liu, 1999: Complete form of vertical vorticity tendency equation and slantwise vorticity development. Acta Meteor. Sinica, 57, 1–15, doi: 10.11676/qxxb1999.001. (in Chinese)Google Scholar
  24. Xie, X., J. H. He, and L. Qi, 2011: A review on applicability evaluation of four reanalysis datasets in China. J. Meteor. Environ., 27, 58–65, doi: 10.3969/j.issn.1673-503X.2011.05.011. (in Chinese)Google Scholar
  25. Xu, G. C., and Z. Y. Zhang, 1983: The effect of Qinghai–Xizang Plateau on the formation of dry climate over Northwest China. Plateau Meteor., 2, 9–16. (in Chinese)Google Scholar
  26. Xu, J. F., J. H. Tao, and J. P. Xia, 2000: A meso-scale analysis of a Qinghai–Xizang Plateau snowstorm and its vorticity source study. Plateau Meteor., 19, 187–197, doi: 10.3321/j.issn: 1000–0534.2000.02.008. (in Chinese)Google Scholar
  27. Xu, X. D., T. L. Zhao, C. G. Lu, et al., 2014: Characteristics of the water cycle in the atmosphere over the Tibetan Plateau. Acta Meteor. Sinica, 72, 1079–1095, doi: 10.11676/qxxb2014.091. (in Chinese)Google Scholar
  28. Xue, Z., 1980: A case study of a shear line producing heavy rainfall on the Qinghai–Xizang Plateau. Acta Meteor. Sinica, 38, 142–149, doi: 10.11676/qxxb1980.017. (in Chinese)Google Scholar
  29. Yamada, H., 2008: Numerical simulations of the role of land surface conditions in the evolution and structure of summertime thunderstorms over a flat highland. Mon. Wea. Rev., 136, 173–188, doi: 10.1175/2007MWR2053.1.CrossRefGoogle Scholar
  30. Yanai, M., and C. F. Li, 1994: Mechanism of heating and the boundary layer over the Tibetan Plateau. Mon. Wea. Rev., 122, 305–323, doi: 10.1175/1520-0493(1994)122<0305:MOHATB> 2.0.CO;2.CrossRefGoogle Scholar
  31. Yang, K., X. F. Kun, J. He, et al., 2011: On the climatology and trend of the atmospheric heat source over the Tibetan Plateau: An experiments-supported revisit. J. Climate, 24, 1525–1541, doi: 10.1175/2010JCLI3848.1.CrossRefGoogle Scholar
  32. Yao, X. P., and J. Y. Sun, 2013: Thermodynamics analysis of the impact of disturbances in the easterlies on the short-term east–west shift of the western Pacific subtropical high. J. Trop. Meteor., 29, 551–558, doi: 10.3969/j.issn.1004-4965. 2013.04.003. (in Chinese)Google Scholar
  33. Yao, X. P., J. Y. Sun, L. Kang, et al., 2014: Advances on research of shear/convergence lines over the Qinghai–Xizang Plateau. Plateau Meteor., 33, 294–300. (in Chinese)Google Scholar
  34. Ye, D. Z., 1981: Some characteristics of the summer circulation over the Qinghai–Xizang (Tibet) Plateau and its neighborhood. Bull. Amer. Meteor. Soc., 62, 14–19, doi: 10.1175/1520-0477(1981)062<0014:SCOTSC>2.0.CO;2.CrossRefGoogle Scholar
  35. Ye, D. Z., and J. Q. Zhang, 1974: A preliminary experimental simulation on the heating effect of the Tibetan Plateau on the general circulation over East Asia in summer. Sci. China A, (3), 301–320.Google Scholar
  36. Ye, D. Z., S. W. Luo, and B. Z. Zhu, 1957: The wind structure and heat balance in the lower troposphere over Tibetan Plateau and its surrounding. Acta Meteor. Sinica, 28, 108–121, doi: 10.11676/qxxb1957.010. (in Chinese)Google Scholar
  37. Ye, D. Z., S. Y. Tao, and M. C. Li, 1958: The abrupt change of circulation over Northern Hemisphere during June and October. Acta Meteor. Sinica, 29, 249–263. (in Chinese)Google Scholar
  38. Ye, D. Z., Y. X. Gao, and Q. Chen, 1977: On some features of the summer atmospheric circulation over the Tsinghai–Tibetan Plateau and its neighbourhood. Chinese J. Atmos. Sci., 1, 289–299, doi: 10.3878/j.issn.1006-9895.1977.04.06. (in Chinese)Google Scholar
  39. Yi, D. S., 1979: On the local diabatic frontogenesis in the central part of Qingzang Gaoyuan. Acta Meteor. Sinica, 37, 16–25, doi: 10.11676/qxxb1979.035. (in Chinese)Google Scholar
  40. Yu, S. H., and W. L. Gao, 2010: Comparison on structure characteristics of two Tibetan Plateau vortexes in summer 1998. Plateau Meteor., 29, 1357–1368. (in Chinese)Google Scholar
  41. Yu, S. H., W. L. Gao, and J. Peng, 2013: Statistical analysis of shear line activity in QXP and its influence on rainfall in China in recent 13 years. Plateau Meteor., 32, 1527–1537. (in Chinese)Google Scholar
  42. Yu, S. H., W. L. Gao, J. Peng, et al., 2014: Observational facts of sustained departure plateau vortexes. J. Meteor. Res., 28, 296–307, doi: 10.1007/s13351-014-3023-9.CrossRefGoogle Scholar
  43. Zhang, S. L., and S. Y. Tao, 2002: The influences of Tibetan Plateau on weather anomalies over Changjiang River in 1998. Acta Meteor. Sinica, 60, 442–452, doi: 10.11676/qxxb2002. 052. (in Chinese)Google Scholar
  44. Zhang, X., X. P. Yao, J. L. Ma, et al., 2016: Climatology of transverse shear lines related to heavy rainfall over the Tibetan Plateau during boreal summer. J. Meteor. Res., 30, 915–926, doi: 10.1007/s13351-016-6952-7.CrossRefGoogle Scholar
  45. Zhang, X. L., and L. S. Cheng, 2000: Dynamic diagnoses of the genesis and development for the mesoscale shear line during “96.1” snowstorm. I: Diagnoses of vorticity and vorticity variability. Plateau Meteor., 19, 285–294, doi: 10.3321/j.issn: 1000–0534.2000.03.003. (in Chinese)Google Scholar
  46. Zhao, T. B., and C. B. Fu, 2009: Applicability evaluation for several reanalysis datasets using the upper-air observations over China. Chinese J. Atmos. Sci., 33, 634–648, doi: 10.3878/j.issn. 1006–9895.2009.03.19. (in Chinese)Google Scholar
  47. Zhou, B., H. M. Xu, Y. K. Tan, et al., 2001: Research on vertical section of shear vorticity and diabatic heating with Wuhan torrential rain in 1998. Acta Meteor. Sinica, 59, 707–718, doi: 10.11676/qxxb2001.074. (in Chinese)Google Scholar

Copyright information

© The Chinese Meteorological Society and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Qin Guan
    • 1
  • Xiuping Yao
    • 2
  • Qingping Li
    • 3
  • Yuancang Ma
    • 1
  • Honghua Zhang
    • 4
  1. 1.Qinghai Provincial Meteorological ObservatoryXiningChina
  2. 2.China Meteorological Administration Training CentreBeijingChina
  3. 3.Huangnanzhou Meteorological Office of Qinghai ProvinceTongrenChina
  4. 4.Lianyungang Meteorological Observatory of Jiangsu ProvinceLianyungangChina

Personalised recommendations