Advertisement

Journal of Meteorological Research

, Volume 32, Issue 3, pp 421–432 | Cite as

Effect of Mesoscale Land Use Change on Characteristics of Convective Boundary Layer: Semi-Idealized Large Eddy Simulations over Northwest China

  • Bangjun Cao
  • Shuwen Zhang
  • Deqin Li
  • Yanlin Li
  • Linfan Zhou
  • Jiemin Wang
Regular Articles

Abstract

Although large-scale topography and land use have been properly considered in weather and climate models, the effect of mesoscale and microscale heterogeneous land use on convective boundary layer (CBL) has not been fully understood yet. In this study, the influence of semi-idealized strip-like patches of oases and deserts, which resemble irrigated land use in Northwest China, on the CBL characteristics, is investigated based on the Weather Research and Forecasting (WRF)-large eddy simulation (LES) driven by observed land surface data. The influences of soil water content in oases on aloft CBL flow structure, stability, turbulent kinetic energy (TKE), and vertical fluxes are carefully examined through a group of sensitivity experiments. The results show that secondary circulation (SC)/turbulent organized structures (TOS) is the strongest/weakest when soil water content in oases is close to saturation (e.g., when the oases are irrigated). With the decrease of soil water content in oases (i.e., after irrigation), SC (TOS) becomes weak (strong) in the lower and middle CBL, the flux induced by SC and TOS becomes small (large), which has a dramatic impact on point measurement of eddy covariance (EC) fluxes. The flux induced by SC and TOS has little influence on EC sensible heat flux, but great influence on EC latent heat flux. Under this circumstance, the area averaged heat flux cannot be represented by point measurement of flux by the EC method, especially just after irrigation in oases. Comparison of imbalance ratio (i.e., contribution of SC and TOS to the total flux) reveals that increased soil moisture in oases leads to a larger imbalance ratio as well as enhanced surface heterogeneity. Moreover, we found that the soil layer configuration at different depths has a negligible impact on the CBL flux properties.

Key words

oasis and desert land surface heterogeneity large eddy simulation soil water content secondary circulation turbulent organized structure 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

The observation data used in this paper were kindly provided by the MUlti-Scale Observation EXpEriment on Evapotranspiration over heterogeneous land surfaces 2012 (MUSOEXE-12) under the Heihe Watershed Allied Telemetry Experimental Research (HiWATER). See their website http://westdc. westgis.ac.cn/archives/news/sciencenews/archive- 144.html for details.

References

  1. Avissar R., and T. Schmidt, 1998: An evaluation of the scale at which ground-surface heat flux patchiness affects the convective boundary layer using large-eddy simulations. J. Atmos. Sci., 55, 2666–2689, doi: 10.1175/1520-0469(1998)055<2666:AEOTSA>2.0.CO;2.CrossRefGoogle Scholar
  2. Chu P. C., S. H. Lu, and Y. C. Chen, 2005: A numerical modeling study on desert oasis self-supporting mechanisms. J. Hydrol., 312, 256–276, doi: 10.1016/j.jhydrol.2005.02.043.CrossRefGoogle Scholar
  3. Courault D., P. Drobinski, Y. Brunet, et al., 2007: Impact of surface heterogeneity on a buoyancy-driven convective boundary layer in light winds. Bound.-Layer Meteor., 124, 383–403, doi: 10.1007/s10546-007-9172-y.CrossRefGoogle Scholar
  4. Deardorff J. W., 1972: Numerical investigation of neutral and unstable planetary boundary layers. J. Atmos. Sci., 29, 91–115, doi: 10.1175/1520-0469(1972)029<0091:NIONAU>2.0.CO;2.CrossRefGoogle Scholar
  5. Deardorff J. W., 1980: Stratocumulus-capped mixed layers derived from a three-dimensional model. Bound.-Layer Meteor., 18, 495–527, doi: 10.1007/BF00119502.CrossRefGoogle Scholar
  6. Foken T., 2008: The energy balance closure problem: An overview. Ecol. Appl., 18, 1351–1367, doi: 10.1890/06-0922.1.CrossRefGoogle Scholar
  7. Foken T., M. Mauder, C. Liebethal, et al., 2010: Energy balance closure for the LITFASS-2003 experiment. Theor. Appl. Climatol., 101, 149–160, doi: 10.1007/s00704-009-0216-8.CrossRefGoogle Scholar
  8. Hadfield M. G., W. R. Cotton, and R. A. Pielke, 1991: Large-eddy simulations of thermally forced circulations in the convective boundary layer. Part I: A small-scale circulation with zero wind. Bound.-Layer Meteor., 57, 79–114, doi: 10.1007/BF00119714.CrossRefGoogle Scholar
  9. Heinemann G., and M. Kerschgens, 2005: Comparison of methods for area-averaging surface energy fluxes over heterogeneous land surfaces using high-resolution non-hydrostatic simulations. Int. J. Climatol., 25, 379–403, doi: 10.1002/joc.1123.CrossRefGoogle Scholar
  10. Huang H. Y., and S. A. Margulis, 2010: Evaluation of a fully coupled large-eddy simulation-land surface model and its diagnosis of land–atmosphere feedbacks. Water Resour. Res., 46, W06512, doi: 10.1029/2009WR008232.Google Scholar
  11. Huang J. P., X. H. Lee, and E. G. Patton, 2008: A modelling study of flux imbalance and the influence of entrainment in the convective boundary layer. Bound.-Layer Meteor., 127, 273–292, doi: 10.1007/s10546-007-9254-x.CrossRefGoogle Scholar
  12. Inagaki A., M. O. Letzel, S. Raasch, et al., 2006: Impact of surface heterogeneity on energy imbalance: A study using LES. J. Meteor. Soc. Japan, 84, 187–198, doi: 10.2151/jmsj.84.187.CrossRefGoogle Scholar
  13. Kanda M., A. Inagaki, M. O. Letzel, et al., 2004: LES study of the energy imbalance problem with eddy covariance fluxes. Bound.-Layer Meteor., 110, 381–401, doi: 10.1023/B:BOUN.0000007225.45548.7a.CrossRefGoogle Scholar
  14. Klemp J. B., and R. B. Wilhelmson, 1978: The simulation of three-dimensional convective storm dynamics. J. Atmos. Sci., 35, 1070–1096, doi: 10.1175/1520-0469(1978)035<1070:TSOTDC>2.0.CO;2.CrossRefGoogle Scholar
  15. Klemp J. B., J. Dudhia, and A. D. Hassiotis, 2008: An upper gravity-wave absorbing layer for NWP applications. Mon. Wea. Rev., 136, 3987–4004, doi: 10.1175/2008MWR2596.1.CrossRefGoogle Scholar
  16. Li X., G. D. Cheng, S. M. Liu, et al., 2013: Heihe watershed allied telemetry experimental research (HiWATER): Scientific objectives and experimental design. Bull. Amer. Meteor. Soc., 94, 1145–1160, doi: 10.1175/BAMS-D-12-00154.1.CrossRefGoogle Scholar
  17. Liu S. F., and Y. P. Shao, 2013: Soil-layer configuration requirement for large-eddy atmosphere and land surface coupled modeling. Atmos. Sci. Lett., 14, 112–117, doi: 10.1002/asl2.426.CrossRefGoogle Scholar
  18. Liu S. M., Z. W. Xu, W. Z. Wang, et al., 2011: A comparison of eddy-covariance and large aperture scintillometer measurements with respect to the energy balance closure problem. Hydrol. Earth Syst. Sci., 15, 1291–1306, doi: 10.5194/hess-15-1291-2011.CrossRefGoogle Scholar
  19. Maronga B., and S. Raasch, 2013: Large-eddy simulations of surface heterogeneity effects on the convective boundary layer during the LITFASS-2003 experiment. Bound.-Layer Meteor., 146, 17–44, doi: 10.1007/s10546-012-9748-z.CrossRefGoogle Scholar
  20. Meng X., S. Lu, T. Zhang, et al., 2012: Impacts of inhomogeneous landscapes in oasis interior on the oasis self-maintenance mechanism by integrating numerical model with satellite data. Hydrol. Earth Syst. Sci., 16, 3729–3738, doi: 10.5194/hess-16-3729-2012.CrossRefGoogle Scholar
  21. Meng X., S. Lu, Y. Gao, et al., 2015: Simulated effects of soil moisture on oasis self-maintenance in a surrounding desert environment in Northwest China. Int. J. Climatol., 35, 4116–4125, doi: 10.1002/joc.4271.CrossRefGoogle Scholar
  22. Moeng, C.-H., J. Dudhia, J. Klemp, et al., 2007: Examining twoway grid nesting for large eddy simulation of the PBL using the WRF model. Mon. Wea. Rev., 135, 2295–2311, doi: 10.1175/MWR3406.1.CrossRefGoogle Scholar
  23. Niu G. Y., Z. L. Yang, K. E. Mitchell, et al., 2011: The community Noah land surface model with multiparameterization options (Noah-MP): 1. Model description and evaluation with local-scale measurements. J. Geophys. Res., 116, D12109, doi: 10.1029/2010JD015139.CrossRefGoogle Scholar
  24. Patton E. G., P. P. Sullivan, and C.-H. Moeng, 2005: The influence of idealized heterogeneity on wet and dry planetary boundary layers coupled to the land surface. J. Atmos. Sci., 62, 2078–2097, doi: 10.1175/JAS3465.1.CrossRefGoogle Scholar
  25. Raasch S., and G. Harbusch, 2001: An analysis of secondary circulations and their effects caused by small-scale surface inhomogeneities using large-eddy simulation. Bound.-Layer Meteor., 101, 31–59, doi: 10.1023/A:1019297504109.CrossRefGoogle Scholar
  26. Shao Y. P., S. F. Liu, J. H. Schween, et al., 2013: Large-eddy atmosphere–land-surface modelling over heterogeneous surfaces: Model development and comparison with measurements. Bound.-Layer Meteor., 148, 333–356, doi: 10.1007/s10546-013-9823-0.CrossRefGoogle Scholar
  27. Shen L. D., J. N. Sun, R. M. Yuan, et al., 2016: Characteristics of secondary circulations in the convective boundary layer over two-dimensional heterogeneous surfaces. J. Meteor. Res., 30, 944–960, doi: 10.1007/s13351-016-6016-z.CrossRefGoogle Scholar
  28. Shen S. H., and M. Y. Leclerc, 1995: How large must surface inhomogeneities be before they influence the convective boundary layer structure? A case study. Quart. J. Roy. Meteor. Soc., 121, 1209–1228, doi: 10.1002/qj.49712152603.CrossRefGoogle Scholar
  29. Solomon A., M. D. Shupe, P. O. G. Persson, et al., 2011: Moisture and dynamical interactions maintaining decoupled Arctic mixed-phase stratocumulus in the presence of a humidity inversion. Atmos. Chem. Phys., 11, 10127–10148, doi: 10.5194/acp-11-10127-2011.CrossRefGoogle Scholar
  30. Steinfeld G., M. O. Letzel, S. Raasch, et al., 2007: Spatial representativeness of single tower measurements and the imbalance problem with eddy-covariance fluxes: Results of a large-eddy simulation study. Bound.-Layer Meteor., 123, 77–98, doi: 10.1007/s10546-006-9133-x.CrossRefGoogle Scholar
  31. Talbot C., E. Bou-Zeid, and J. Smith, 2012: Nested mesoscale large-eddy simulations with WRF: Performance in real test cases. J. Hydrometeorol., 13, 1421–1441, doi: 10.1175/JHMD-11-048.1.CrossRefGoogle Scholar
  32. Wang J. M., W. Z. Wang, S. M. Liu, et al., 2009: The problems of surface energy balance closure—An overview and case study. Adv. Earth Sci., 24, 705–713, doi: 10.11867/j.issn.1001-8166.2009.07.0705. (in Chinese)Google Scholar
  33. Wang R. Y., Q. Zhang, H. Zhao, et al., 2012: Analysis of the surface energy closure for a site in the Gobi Desert in Northwest China. Acta Meteor. Sinica, 26, 250–259, doi: 10.1007/s13351-012-0210-4.CrossRefGoogle Scholar
  34. Yamaguchi T., and G. Feingold, 2012: Technical note: Largeeddy simulation of cloudy boundary layer with the Advanced Research WRF model. J. Adv. Model. Earth Syst., 4, M09003, doi: 10.1029/2012MS000164.CrossRefGoogle Scholar
  35. Zhang S. W., D. Q. Li, and C. J. Qiu, 2009: A comparative study of the three land surface models in simulating the soil moisture profile. Plateau Meteor., 28, 988–996. (in Chinese)Google Scholar
  36. Zhang S. W., D. Q. Li, Y. H. Liu, et al., 2010: A comparative study of the difference algorithms for solving the soil moisture equation. J. Lanzhou Univ. Nat. Sci., 46, 46–52, doi: 10.13885/j.issn.0455-2059.2010.04.012. (in Chinese)Google Scholar

Copyright information

© The Chinese Meteorological Society and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Bangjun Cao
    • 1
    • 2
  • Shuwen Zhang
    • 2
  • Deqin Li
    • 3
  • Yanlin Li
    • 2
  • Linfan Zhou
    • 2
  • Jiemin Wang
    • 4
  1. 1.School of Atmospheric SciencesChengdu University of Information TechnologyChengduChina
  2. 2.Key Laboratory for Semi-Arid Climate Change of the Ministry of Education, College of Atmospheric SciencesLanzhou UniversityLanzhouChina
  3. 3.Shenyang Central Meteorological ObservatoryShenyangChina
  4. 4.Cold and Arid Regions Environmental and Engineering Research InstituteChinese Academy of SciencesLanzhouChina

Personalised recommendations