Advertisement

Journal of Meteorological Research

, Volume 32, Issue 5, pp 734–743 | Cite as

The Observation of Ice-Nucleating Particles Active at Temperatures above–15°C and Its Implication on Ice Formation in Clouds

  • Kai Bi
  • Xincheng Ma
  • Yunbo Chen
  • Shizuo Fu
  • Huiwen Xue
Special Collection on Aerosol-Cloud-Radiation Interactions
  • 7 Downloads

Abstract

A series of measurements of ice-nucleating particles (INPs) were performed at two sites in Beijing. At the Beijing Meteorological Service (BMS) site, which was an urban site, no INPs were found to be active above–15°C. However, at the Yanjiaping (YJP) site, which was a rural site, the concentration of INPs active at temperatures above–15°C was found to be as high as 1.73 g–1. Two parameterizations were constructed by respectively fitting the data obtained at BMS site and YJP site. The two parameterizations, as well as another parameterization from the literature, were implemented into a parcel model to investigate the effect of INPs active above–15°C on phase partitioning in mixed-phase clouds. At a vertical velocity of 0.01 m s–1, which is typical for stratiform clouds associated with frontal systems, the INPs active above–15°C nucleate ice crystals at low levels. The growth of these ice crystals remarkably reduces both the maximum liquid water mixing ratio and the altitude where the maximum liquid water mixing ratio is reached. When the vertical velocity of the parcel is increased to 0.1 m s–1 or an even higher value, the evolution of liquid water mixing ratio is not controlled by the INPs active above–15°C but those active below–15°C.

Key words

ice-nucleating particles observation parcel model phase partitioning stratiform clouds 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

We are grateful to Deping Ding for initiating the collaboration between Beijing Weather Modification Office and Peking University.

References

  1. Atkinson, J. D., B. J. Murray, M. T. Woodhouse, et al.,2013: The importance of feldspar for ice nucleation by mineral dust in mixed-phase clouds. Nature, 498, 355–358, doi: 10.1038/nature12278.CrossRefGoogle Scholar
  2. Bigg, E. K., 1957: A new technique for counting ice-forming nuclei in aerosols. Tellus, 9, 394–400, doi: 10.1111/j.2153-3490. 1957.tb01895.x.CrossRefGoogle Scholar
  3. Burrows, S. M., C. Hoose, U. Pöschl, et al.,2013: Ice nuclei in marine air: Biogenic particles or dust? Atmos. Chem. Phys., 13, 245–267, doi: 10.5194/acp-13-245-2013.Google Scholar
  4. Chen, J., Z. J. Wu, S. Augustin-Bauditz, et al.,2018: Ice-nucleating particle concentrations unaffected by urban air pollution in Beijing, China. Atmos. Chem. Phys., 18, 3523–3539, doi: 10.5194/acp-18-3523-2018.CrossRefGoogle Scholar
  5. DeMott, P. J., 1990: An exploratory study of ice nucleation by soot aerosols. J. Appl. Meteor., 29, 1072–1079, doi: 10.1175/1520-0450(1990)029<1072:AESOIN>2.0.CO;2.CrossRefGoogle Scholar
  6. DeMott, P. J., A. J. Prenni, X. Liu, et al.,2010: Predicting global atmospheric ice nuclei distributions and their impacts on climate. Proc. Natl. Acad. Sci. USA, 107, 11217–11222, doi: 10.1073/pnas.0910818107.CrossRefGoogle Scholar
  7. Durran, D. R., and L. W. Snellman, 1987: The diagnosis of synoptic-scale vertical motion in an operational environment. Wea. Forecasting, 2, 17–31, doi: 10.1175/1520-0434(1987)002 <0017:TDOSSV>2.0.CO;2.CrossRefGoogle Scholar
  8. Flatau, P. J., R. L. Walko, and W. R. Cotton, 1992: Polynomial fits to saturation vapor pressure. J. Appl. Meteor., 31, 1507–1513, doi: 10.1175/1520-0450(1992)031<1507:PFTSVP>2.0.CO;2.CrossRefGoogle Scholar
  9. Fu, S. Z., and H. W. Xue, 2017: The effect of ice nuclei efficiency on arctic mixed-phase clouds from large-eddy simulations. J. Atmos. Sci., 74, 3901–3913, doi: 10.1175/JAS-D-17-0112.1.CrossRefGoogle Scholar
  10. Hallett, J., and S. C. Mossop, 1974: Production of secondary ice particles during the riming process. Nature, 249, 26–28, doi: 10.1038/249026a0.CrossRefGoogle Scholar
  11. Heymsfield, A. J., and S. C. Mossop, 1984: Temperature dependence of secondary ice crystal production during soft hail growth by riming. Quart. J. Roy. Meteor. Soc., 110, 765–770, doi: 10.1002/qj.49711046512.CrossRefGoogle Scholar
  12. Hobbs, P. V., and A. J. Alkezweeny, 1968: The fragmentation of freezing water droplets in free fall. J. Atmos. Sci., 25, 881–888, doi: 10.1175/1520-0469(1968)025<0881:TFOFWD >2.0.CO;2.CrossRefGoogle Scholar
  13. Hoose, C., J. E. Kristjánsson, J.-P. Chen, et al.,2010: A classical-theory-based parameterization of heterogeneous ice nucleation by mineral dust, soot, and biological particles in a global climate model. J. Atmos. Sci., 67, 2483–2503, doi: 10.1175/2010JAS3425.1.CrossRefGoogle Scholar
  14. Huffman, J. A., A. J. Prenni, P. J. DeMott, et al.,2013: High concentrations of biological aerosol particles and ice nuclei during and after rain. Atmos. Chem. Phys., 13, 6151–6164, doi: 10.5194/acp-13-6151-2013.CrossRefGoogle Scholar
  15. Jiang, H., Y. Yin, H. Su, et al.,2015: The characteristics of atmospheric ice nuclei measured at the top of Huangshan (the Yellow Mountains) in Southeast China using a newly built static vacuum water vapor diffusion chamber. Atmos. Res., 153, 200–208, doi: 10.1016/j.atmosres.2014.08.015.CrossRefGoogle Scholar
  16. Jiang, H., Y. Yin, X. Wang, et al.,2016: The measurement and parameterization of ice nucleating particles in different backgrounds of China. Atmos. Res., 181, 72–80, doi: 10.1016/j.atmosres. 2016.06.013.CrossRefGoogle Scholar
  17. Joly, M., P. Amato, L. Deguillaume, et al.,2014: Quantification of ice nuclei active at near 0°C temperatures in low-altitude clouds at the Puy de Dôme atmospheric station. Atmos. Chem. Phys., 14, 8185–8195, doi: 10.5194/acp-14-8185-2014.CrossRefGoogle Scholar
  18. Kikuro, T., S. Masaki, W. Kenji, et al.,2015: An example of canal formation in a thick cloud induced by massive seeding using liquid carbon dioxide. J. Meteor. Res., 29, 682–690, doi: 10.1007/s13351-015-5005-y.CrossRefGoogle Scholar
  19. Korolev, A., and G. Isaac, 2003: Phase transformation of mixedphase clouds. Quart. J. Roy. Meteor. Soc., 129, 19–38, doi: 10.1256/qj.01.203.CrossRefGoogle Scholar
  20. Korolev, A., and P. R. Field, 2008: The effect of dynamics on mixed-phase clouds: Theoretical considerations. J. Atmos. Sci., 65, 66–86, doi: 10.1175/2007JAS2355.1.CrossRefGoogle Scholar
  21. Lamb, D., and J. Verlinde, 2011: Physics and Chemistry of Clouds. Cambridge University Press, Cambridge, United Kingdom, 584 pp.CrossRefGoogle Scholar
  22. Li, Z., H. W. Xue, and F. Yang, 2013: A modeling study of ice formation affected by aerosols. J. Geophys. Res. Atmos., 118, 11213–11227, doi: 10.1002/jgrd.50861.CrossRefGoogle Scholar
  23. Lohmann, U., 2002: A glaciation indirect aerosol effect caused by soot aerosols. Geophys. Res. Lett., 29, 11-1–11-4, doi: 10.10 29/2001GL014357.CrossRefGoogle Scholar
  24. Ma, X. C., K. Bi, Y. B. Chen, et al.,2017: Characteristics of winter clouds and precipitation over the mountains of northern Beijing. Adv. Meteor., 2017, 3536107, doi: 10.1155/2017/3536107.Google Scholar
  25. Masaki, S., T. Kikuro, and N. Koji, 2016: Model analysis of radar echo split observed in an artificial cloud seeding experiment. J. Meteor. Res., 30, 386–400, doi: 10.1007/s13351-016-5053-y.CrossRefGoogle Scholar
  26. Meyers, M. P., P. J. DeMott, and W. R. Cotton, 1992: New primary ice-nucleation parameterizations in an explicit cloud model. J. Appl. Meteor., 31, 708–721, doi: 10.1175/1520-0450(1992)031<0708:NPINPI>2.0.CO;2.CrossRefGoogle Scholar
  27. Mossop, S. C., and J. Hallett, 1974: Ice crystal concentration in cumulus clouds: Influence of the drop spectrum. Science, 186, 632–634, doi: 10.1126/science.186.4164.632.CrossRefGoogle Scholar
  28. Murray, B. J., S. L. Broadley, T. W. Wilson, et al.,2011: Heterogeneous freezing of water droplets containing kaolinite particles. Atmos. Chem. Phys., 11, 4191–4207, doi: 10.5194/acp-11-4191-2011.CrossRefGoogle Scholar
  29. O’Sullivan, D., B. J. Murray, T. L. Malkin, et al.,2014: Ice nucleation by fertile soil dusts: Relative importance of mineral and biogenic components. Atmos. Chem. Phys., 14, 1853–1867, doi: 10.5194/acp-14-1853-2014.CrossRefGoogle Scholar
  30. Ovchinnikov, M., A. S. Ackerman, A. Avramov, et al.,2014: Intercomparison of large-eddy simulations of Arctic mixedphase clouds: Importance of ice size distribution assumptions. J. Adv. Model. Earth Syst., 6, 223–248, doi: 10.1002/2013MS000282.CrossRefGoogle Scholar
  31. Prenni, A. J., P. J. DeMott, D. C. Rogers, et al.,2009: Ice nuclei characteristics from M-PACE and their relation to ice formation in clouds. Tellus, 61, 436–448, doi: 10.1111/j.1600-0889.2009.00415.x.CrossRefGoogle Scholar
  32. Savre, J., and A. M. L. Ekman, 2015: Large-eddy simulation of three mixed-phase cloud events during ISDAC: Conditions for persistent heterogeneous ice formation. J. Geophys. Res. Atmos., 120, 7699–7725, doi: 10.1002/2014JD023006.CrossRefGoogle Scholar
  33. Schnell, R. C., and G. Vali, 1976: Biogenic ice nuclei: Part I. Terrestrial and marine sources. J. Atmos. Sci., 33, 1554–1564, doi: 10.1175/1520-0469(1976)033<1554:BINPIT>2.0.CO;2.CrossRefGoogle Scholar
  34. Sesartic, A., U. Lohmann, and T. Storelvmo, 2013: Modelling the impact of fungal spore ice nuclei on clouds and precipitation. Environ. Res. Lett., 8, 014029, doi: 10.1088/1748-9326/8/1/014029.CrossRefGoogle Scholar
  35. Solomon, A., G. Feingold, and M. D. Shupe, 2015: The role of ice nuclei recycling in the maintenance of cloud ice in Arctic mixed-phase stratocumulus. Atmos. Chem. Phys., 15, 10,631–10,643, doi: 10.5194/acp-15-10631-2015.CrossRefGoogle Scholar
  36. Sulia, K. J., and J. Y. Harrington, 2011: Ice aspect ratio influences on mixed-phase clouds: Impacts on phase partitioning in parcel models. J. Geophys. Res. Atmos., 116, D21309, doi: 10.1029/2011JD016298.CrossRefGoogle Scholar
  37. Thompson, G., and T. Eidhammer, 2014: A study of aerosol impacts on clouds and precipitation development in a large winter cyclone. J. Atmos. Sci., 71, 3636–3658, doi: 10.1175/JAS-D-13-0305.1.CrossRefGoogle Scholar
  38. Vali, G., M. Christensen, R. W. Fresh, et al.,1976: Biogenic ice nuclei. Part II: Bacterial sources. J. Atmos. Sci., 33, 1565–1570, doi: 10.1175/1520-0469(1976)033<1565:BINPIB>2.0. CO;2.Google Scholar
  39. Vali, G., P. J. DeMott, O. Möhler, et al.,2015: Technical Note: A proposal for ice nucleation terminology. Atmos. Chem. Phys., 15, 10263–10270, doi: 10.5194/acp-15-10263-2015.CrossRefGoogle Scholar
  40. Wang, D. H., J. F. Yin, and G. Q. Zhai, 2015: In-situ measurements of cloud–precipitation microphysics in the East Asian monsoon region since 1960. J. Meteor. Res., 29, 155–179, doi: 10.1007/s13351-015-3235-7.CrossRefGoogle Scholar
  41. Xue, H. W., and G. Feingold, 2004: A modeling study of the effect of nitric acid on cloud properties. J. Geophys. Res. Atmos., 109, D18204, doi: 10.1029/2004JD004750.CrossRefGoogle Scholar
  42. Yang, S. Z., X. F. Lou, G. Huang, et al.,2007: A 15 L mixing cloud chamber for testing ice nuclei. J. Appl. Meteor. Sci., 18, 716–721. (in Chinese)Google Scholar
  43. Young, K. C., 1974: The role of contact nucleation in ice phase initiation in clouds. J. Atmos. Sci., 31, 768–776, doi: 10.1175/1520-0469(1974)031<0768:TROCNI>2.0.CO;2.CrossRefGoogle Scholar
  44. Zeng, X. P., W.-K. Tao, M. H. Zhang, et al.,2009: An indirect effect of ice nuclei on atmospheric radiation. J. Atmos. Sci., 66, 41–61, doi: 10.1175/2008JAS2778.1.CrossRefGoogle Scholar

Copyright information

© The Chinese Meteorological Society and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Kai Bi
    • 1
    • 2
    • 3
  • Xincheng Ma
    • 1
    • 2
    • 6
  • Yunbo Chen
    • 1
    • 5
  • Shizuo Fu
    • 4
    • 5
  • Huiwen Xue
    • 4
    • 5
  1. 1.Beijing Weather Modification Office (BWMO)BeijingChina
  2. 2.Beijing Key Laboratory of Cloud, Precipitation, and Atmospheric Water ResourcesBeijingChina
  3. 3.Field Experiment Base for Cloud and Precipitation Research in North ChinaChina Meteorological AdministrationBeijingChina
  4. 4.Department of Atmospheric and Oceanic SciencesSchool of Physics, Peking University (PKU)BeijingChina
  5. 5.PKU–BWMO Joint Laboratory on Cloud and Precipitation PhysicsBeijingChina
  6. 6.Institute of Urban MeteorologyChina Meteorological AdministrationBeijingChina

Personalised recommendations