Advertisement

Journal of Meteorological Research

, Volume 32, Issue 4, pp 548–559 | Cite as

Joint Impacts of SSTA in Tropical Pacific and Indian Oceans on Variations of the WPSH

  • Daili Qian
  • Zhaoyong Guan
  • Weiya Tang
Article
  • 32 Downloads

Abstract

Using the NCEP/NCAR reanalysis and HadISST sea surface temperature (SST) data, the joint effects of the tropical Indian Ocean and Pacific on variations of area of the summertime western Pacific subtropical high (WPSH) for period 1980–2016 are investigated. It is demonstrated that the central tropical Indian Ocean (CTI) and central equatorial Pacific (CEP) are two key oceanic regions that affect the summertime WPSH. During autumn and winter, warm SST anomalies (SSTAs) in CEP force the Walker circulation to change anomalously, resulting in divergence anomalies over the western Pacific and Maritime Continent (MC). Due to the Gill-type response, the abnormal anticyclonic circulation is generated over the western Pacific and South China Sea (SCS). In the subsequent spring, the warm SSTAs in CEP weaken, while the SST over CTI demonstrates a lagged response to Pacific SSTA. The warm CTISSTA and CEP-SSTA cooperate with the eastward propagation of cold Kelvin waves in the western Pacific, leading to the eastward shift of the abnormal divergence center that originally locates at the western Pacific and MC. The anticyclone forced by this divergence subsequently moves eastward, leading to the intensification of the negative vorticity there. Meanwhile, warm SSTA in CTI triggers eastward propagating Kelvin waves, which lead to easterly anomalies over the equatorial Indian Ocean and Indonesia, being favorable for maintenance and intensification of the anticyclone over the SCS and western Pacific. The monsoonal meridional–vertical circulation strengthens, which is favorable for the intensification of the WPSH. Using SSTA over the two key oceanic regions as predictors, a multiple regression model is successfully constructed for prediction of WPSH area. These results are useful for our better understanding the variation mechanisms of WPSH and better predicting summer climate in East Asia.

Key words

western Pacific subtropical high sea surface temperature anomaly tropical Pacific tropical Indian Ocean boreal summer 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alexander, M. A., I. Bladé, M. Newman, et al., 2002: The atmospheric bridge: The influence of ENSO teleconnections on air–sea interaction over the global oceans. J. Climate, 15, 2205–2231, doi: 10.1175/1520-0442(2002)015<2205:TABTIO>2.0. CO;2.CrossRefGoogle Scholar
  2. Ashok, K., Z. Y. Guan, and T. Yamagata, 2003: A look at the relationship between the ENSO and the Indian Ocean dipole. J. Meteor. Soc. Japan, 81, 41–56, doi: 10.2151/jmsj.81.41.CrossRefGoogle Scholar
  3. Behera, S. K., R. Krishnan, and T. Yamagata, 1999: Unusual ocean–atmosphere conditions in the tropical Indian Ocean during 1994. Geophys. Res. Lett., 26, 3001–3004, doi: 10.1029/1999GL010434.CrossRefGoogle Scholar
  4. Cao, J., R. Y. Lu, J. M. Hu, et al., 2013: Spring Indian Oceanwestern Pacific SST contrast and the East Asian summer rainfall anomaly. Adv. Atmos. Sci., 30, 1560–1568, doi: 10.1007/s00376-013-2298-6.CrossRefGoogle Scholar
  5. Chen, Z. S., Z. P. Wen, R. G. Wu, et al., 2016: Relative importance of tropical SST anomalies in maintaining the western north Pacific anomalous anticyclone during El Niño to La Niña transition years. Climate Dyn., 46, 1027–1041, doi: 10.1007/s00382-015-2630-1.CrossRefGoogle Scholar
  6. Chung, P. H., C. H. Sui, and T. Li, 2011: Interannual relationships between the tropical sea surface temperature and summertime subtropical anticyclone over the western North Pacific. J. Geophys. Res., 16, D13111, doi: 10.1029/2010JD015554.CrossRefGoogle Scholar
  7. Dao, S. Y., and S. Y. Hsu, 1962: Some aspects of the circulation during the periods of the persistfnt drought and flood in Yantze and Hwai-ho valleys in summer. Acta Meteor. Sinica, 32, 1–10. (in Chinese)Google Scholar
  8. Emanuel, K. A., J. D. Neelin, and C. S. Bretherton, 1997: Reply to comments by Bjorn Stevens, David A. Randall, Xin Lin and Michael T. Montgomery on ‘On large-scale circulations in convecting atmospheres’ (July B, 1994, 120, 1111–1143). Quart. J. Roy. Meteor. Soc., 123, 1779–1782, doi: 10.1002/qj.49712354217.Google Scholar
  9. Gill, A. E., 1980: Some simple solutions for heat-induced tropical circulation. Quart. J. Roy. Meteor. Soc., 106, 447–462, doi: 10.1002/qj.49710644905.CrossRefGoogle Scholar
  10. Guan, Z. Y., and T. Yamagata, 2003: The unusual summer of 1994 in East Asia: IOD teleconnections. Geophys. Res. Lett., 30, 1554, doi: 10.1029/2002GL016831.CrossRefGoogle Scholar
  11. Guan, Z. Y., J. X. Cai, W. Y. Tang, et al., 2010: Variations of west Pacific subtropical high associated with principal patterns of summertime temperature anomalies in the middle and lower reaches of the Yangtze River. Scientia Meteor. Sinica, 30, 666–675, doi: 10.3969/j.issn.1009-0827.2010.05.014. (in Chinese)Google Scholar
  12. He, C., T. J. Zhou, and B. Wu, 2015: The key oceanic regions responsible for the interannual variability of the western North Pacific subtropical high and associated mechanisms. J. Meteor. Res., 29, 562–575, doi: 10.1007/s13351-015-5037-3.CrossRefGoogle Scholar
  13. Huang, G., and K. M. Hu, 2008: Impact of North Indian Ocean SSTA on northwest Pacific lower layer anomalous anticyclone in summer. J. Nanjing Inst. Meteor., 31, 749–757, doi: 10.3969/j.issn.1674-7097.2008.06.001. (in Chinese)Google Scholar
  14. Jiang, G. R., W. Y. Sha, and J. P. Cai, 1992: The space–time feature of sea surface temperature in the Indian Ocean and the subtropical high over the western Pacific and interaction between them. J. Trop. Meteor., 8, 77–81. (in Chinese)Google Scholar
  15. Kalnay, E., M. Kanamitsu, R. Kistler, et al., 1996: The NCEP/NCAR 40-year reanalysis project. Bull. Amer. Meteor. Soc., 77, 437–470, doi: 10.1175/1520-0477(1996)077<0437:TNY RP>2.0.CO;2.CrossRefGoogle Scholar
  16. Klein, S. A., B. J. Soden, and N. C. Lau, 1999: Remote sea surface temperature variations during ENSO: Evidence for a tropical atmospheric bridge. J. Climate, 12, 917–932, doi: 10.1175/1520-0442(1999)012<0917:RSSTVD>2.0.CO;2.CrossRefGoogle Scholar
  17. Kurihara, K., and M. Kawahara, 1986: Extremes of East Asian weather during the post ENSO years of 1983/84: Severe cold winter and hot dry summer. J. Meteor. Soc. Japan, 64, 494–503, doi: 10.2151/jmsj1965.64.4_493.CrossRefGoogle Scholar
  18. Lau, N. C., and M. J. Nath, 2003: Atmosphere–Ocean variations in the Indo-Pacific sector during ENSO episodes. J. Climate, 16, 3–20, doi: 10.1175/1520-0442(2003)016<0003:AOVITI>2.0. CO;2.CrossRefGoogle Scholar
  19. Li, C. Y., and J. Hu, 1987: A study on interaction between the East-Asia atmospheric circulation and El Niño. Chinese J. Atmos. Sci., 11, 359–364, doi: 10.3878/j.issn.1006-9895.1987. 04.03. (in Chinese)Google Scholar
  20. Li, M. G., Z. Y. Guan, D. C. Jin, et al., 2016: Anomalous circulation patterns in association with two types of daily precipitation extremes over southeastern China during boreal summer. J. Meteor. Res., 30, 183–202, doi: 10.1007/s13351-016-5070-x.CrossRefGoogle Scholar
  21. Li, T., B. Wang, B. Wu, et al., 2017: Theories on formation of an anomalous anticyclone in western North Pacific during El Niño: A review. J. Meteor. Res., 31, 987–1006, doi: 10.1007/s13351-017-7147-6.CrossRefGoogle Scholar
  22. Liu, Y. M., J. L. Hong, C. Liu, et al., 2013: Meiyu flooding of Huaihe River valley and anomaly of seasonal variation of subtropical anticyclone over the western Pacific. Chinese J. Atmos. Sci., 37, 439–450, doi: 10.3878/j.issn.1006-9895.2012. 12313. (in Chinese)Google Scholar
  23. Lu, C. H., L. Huang, J. H. He, et al., 2014: Interannual variability of heat content in western Pacific warm pool and its impact on the eastern Asian climatic anomaly. J. Trop. Meteor., 30, 64–72, doi: 10.3969/j.issn.1004-4965.2014.01.007. (in Chinese)Google Scholar
  24. Luo, H. B., and M. Yanai, 1984: The large-scale circulation and heat sources over the Tibetan Plateau and surrounding areas during the early summer of 1979. Part II: Heat and moisture budgets. Mon. Wea. Rev., 112, 966–989, doi: 10.1175/1520-0493(1984)112<0966:TLSCAH>2.0.CO;2. (in Chinese)Google Scholar
  25. Neelin, J. D., and H. Su, 2005: Moist teleconnection mechanisms for the tropical South American and Atlantic sector. J. Climate, 18, 3928–3950, doi: 10.1175/JCLI3517.1.CrossRefGoogle Scholar
  26. Ohba, M, and H. Ueda, 2006: A role of zonal gradient of SST between the Indian Ocean and the western pacific in localized convection around the Philippines. SOLA, 2, 176–179, doi: 10.2151/sola.2006-045.CrossRefGoogle Scholar
  27. Qian, D. L., and Z. Y. Guan, 2018: Different features of super and regular El Niño events and their impacts on the variation of the west Pacific subtropical high. Acta Meteor. Sinica, 76(3), 394–407, doi: 10.11676/qxxb2018.011. (in Chinese)Google Scholar
  28. Qian, D. L., Z. Y. Guan, and L. J. Wang, 2009: Interdecadal variations of West Pacific subtropical high area and changes in summer precipitation over China in boreal summer during the last 57 years. Trans. Atmos. Sci., 32, 677–685, doi: 10.3969/j.issn.1674-7097.2009.05.012. (in Chinese)Google Scholar
  29. Rayner, N. A., D. E. Parker, E. B. Horton, et al., 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, doi: 10.1029/2002JD002670.CrossRefGoogle Scholar
  30. Saji, N. H., B. N. Goswami, P. N. Vinayachandran, et al., 1999: A dipole mode in the tropical Indian Ocean. Nature, 401, 360–363, doi: 10.1038/43854.Google Scholar
  31. Sardeshmukh, P. D., and B. J. Hoskins, 1988: The generation of global rotational flow by steady Idealized tropical divergence. J. Atmos. Sci., 45, 1228–1251, doi: 10.1175/1520-0469(1988) 045<1228:TGOGRF>2.0.CO;2.CrossRefGoogle Scholar
  32. Suarez, M. J., and P. S. Schopf, 1988: A delayed action oscillator for ENSO. J. Atmos. Sci., 45, 3283–3287, doi: 10.1175/1520-0469(1988)045<3283:ADAOFE>2.0.CO;2.CrossRefGoogle Scholar
  33. Tao, W. C., G. Huang, K. M. Hu, et al., 2015: Interdecadal modulation of ENSO teleconnections to the Indian Ocean basin mode and their relationship under global warming in CMIP5 models. Int. J. Climatol., 35, 391–407, doi: 10.1002/joc.3987.CrossRefGoogle Scholar
  34. Terao, T., and T. Kubota, 2005: East-west SST contrast over the tropical oceans and the post El Niño western north Pacific summer monsoon. Geophys. Res. Lett., 32, L15706, doi: 10.10 29/2005GL023010.CrossRefGoogle Scholar
  35. Wang, B., and Q. Zhang, 2002: Pacific–East Asian teleconnection. Part II: How the Philippine sea anomalous anticyclone is established during El Niño development. J. Climate, 15, 3252–3265, doi: 10.1175/1520-0442(2002)015<3252:PEATPI>2.0. CO;2.Google Scholar
  36. Wang, B., B. Q. Xiang, and J. Y. Lee, 2013: Subtropical high predictability establishes a promising way for monsoon and tropical storm predictions. Proc. Natl. Acad. Sci. U.S.A., 110, 2718–2722, doi: 10.1073/pnas.1214626110.CrossRefGoogle Scholar
  37. Wang, B., J. Li, and Q. He, 2017: Variable and robust East Asian monsoon rainfall response to El Niño over the past 60 years (1957–2016). Adv. Atmos. Sci., 34, 1235–1248, doi: 10.1007/s00376-017-7016-3.CrossRefGoogle Scholar
  38. Wang, B., R. G. Wu, and X. H. Fu, 2000: Pacific–East Asian teleconnection: How does ENSO affect East Asian climate? J Climate, 13, 1517–1536, doi: 10.1175/1520-0442(2000)013 <1517:PEATHD>2.0.CO;2.CrossRefGoogle Scholar
  39. Webster, P. J., A. M. Moore, J. P. Loschnigg, et al., 1999: Coupled ocean–atmosphere dynamics in the Indian Ocean during 1997–98. Nature, 401, 356–360, doi: 10.1038/43848.CrossRefGoogle Scholar
  40. Wong, X. C., Q. L. Zhang, and T. Z. Yan, 1996: Variation of the subsurface water heat content in the tropical western Pacific warm pool area and its relation to precipitation in eastern China and to the western Pacific subtropical high. Studia Marina Sinica, 37, 1–9.Google Scholar
  41. Wu, B., T. Li, and T. J. Zhou, 2010: Relative contributions of the Indian Ocean and local SST anomalies to the maintenance of the western North Pacific anomalous anticyclone during El Niño decaying summer. J. Climate, 23, 2974–2986, doi: 10.1175/2010JCLI3300.1.CrossRefGoogle Scholar
  42. Wu, B., T. J. Zhou, and T. Li, 2009: Seasonally evolving dominant interannual variability modes of East Asian climate. J. Climate, 22, 2992–3005, doi: 10.1175/2008JCLI2710.1.CrossRefGoogle Scholar
  43. Wu, G. X., and H. Z. Liu, 1992: Atmospheric precipitation in response to equatorial and tropical sea surface temperature anomalies. J. Atmos. Sci., 49, 2236–2255, doi: 10.1175/1520-0469(1992)049<2236:APIRTE>2.0.CO;2.CrossRefGoogle Scholar
  44. Wu, G. X., P. Liu, Y. M. Liu, et al., 2000: Impacts of the sea surface temperature anomaly in the Indian Ocean on the subtropical anticyclone over the western Pacific—Two-stage thermal adaptation in the atmosphere. Acta Meteor. Sinica, 58, 513–522, doi: 10.3321/j.issn:0577-6619.2000.05.001. (in Chinese)Google Scholar
  45. Wu, R. G., G. Huang, and Z. C. Du, 2014: Cross-season relation of the South China Sea precipitation variability between winter and summer. Climate Dyn., 43, 193–207, doi: 10.1007/s003 82-013-1820-y.CrossRefGoogle Scholar
  46. Xiang, B. Q., B. Wang, W. D. Yu, et al., 2013: How can anomalous western North Pacific subtropical high intensify in late summer? Geophys. Res. Lett., 40, 2349–2354, doi: 10.1002/grl.50431.CrossRefGoogle Scholar
  47. Xie, S. P., Y. Du, G. Huang, et al., 2010: Decadal shift in El Niño influences on Indo–western Pacific and East Asian climate in the 1970s. J. Climate, 23, 3352–3368, doi: 10.1175/2010JCLI 3429.1.CrossRefGoogle Scholar
  48. Xie, S. P., K. M. Hu, J. Hafner, et al., 2009: Indian ocean capacitor effect on Indo–western Pacific climate during the summer following El Niño. J. Climate, 22, 730–747, doi: 10.1175/2008 JCLI2544.1.CrossRefGoogle Scholar
  49. Yuan, Y., H. Gao, X. L. Jia., et al., 2016: Influences of the 2014–2016 super El Niño event on climate. Meteor. Mon., 42, 532–539, doi: 10.7519/j.issn.1000-0526.2016.05.002. (in Chinese)Google Scholar
  50. Zhai, P. M., R. Yu, Y. J. Guo et al., 2016: The strong El Niño of 2015/16 and its dominant impacts on global and China’s climate. J. Meteor. Res., 30, 283–297, doi: 10.1007/s13351-016-6101-3.CrossRefGoogle Scholar
  51. Zhang, R. H., A. Sumi, and M. Kimoto, 1996: Impact of El Niño on the East Asian monsoon: A diagnostic study of the’ 86/87 and’ 91/92 events. J. Meteor. Soc. Japan, 74, 49–62, doi: 10.2151/jmsj1965.74.1_49.CrossRefGoogle Scholar
  52. Zhang, R. H., Q. Y. Min, and J. Z. Su, 2017: Impact of El Niño on atmospheric circulations over East Asia and rainfall in China: Role of the anomalous western North Pacific anticyclone. Sci. China Earth Sci., 60, 1124–1132, doi: 10.1007/s11430-016-9026-x.CrossRefGoogle Scholar
  53. Zhao, J. H., G. L. Feng, J. Yang, et al., 2012: Analysis of the distribution of the large-scale drought/flood of summer in China under different types of the western Pacific subtropical high. Acta Meteor. Sinica, 70, 1021–1031, doi: 10.11676/qxxb 2012.085. (in Chinese)Google Scholar
  54. Zhou, T. J., Y. Q. Yu, R. C. Yu, et al., 2004: Indian Ocean response to ENSO: Observation and air–sea coupled model simulation. Chinese J. Atmos. Sci., 28, 357–373. (in Chinese)Google Scholar
  55. Zhou, T. J., R. C. Yu, J. Zhang, et al., 2009: Why the western Pacific subtropical high has extended westward since the late 1970s. J. Climate, 22, 2199–2215, doi: 10.1175/2008JCLI 2527.1.CrossRefGoogle Scholar

Copyright information

© The Chinese Meteorological Society and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Key Laboratory of Ministry of Education for Meteorological Disasters/Joint International Research Laboratory of Climate and Environment Change/Collaborative Innovation Center on Forecast and Evaluation of Meteorological DisastersNanjing University of Information Science & TechnologyNanjingChina
  2. 2.State Key Laboratory of Severe WeatherChinese Academy of Meteorological SciencesBeijingChina

Personalised recommendations