Journal of Meteorological Research

, Volume 32, Issue 4, pp 648–660 | Cite as

Seasonal Variations of Aerosol Optical Depth over East China and India in Relationship to the Asian Monsoon Circulation

  • Fenhua Ma
  • Zhaoyong Guan


Seasonal variation features of aerosol optical depth (AOD) over East China and India in association with the Asian monsoon system are investigated, based on the latest AOD data derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) aboard the Terra satellite, the NCEP Final (FNL) Operational Global Analysis data, the Climate Prediction Center (CPC) Merged Analysis of Precipitation (CMAP) data, and the NCEP/NCAR reanalysis data from March 2000 to February 2017. The results indicate that AOD in East China is significantly larger than that in India, especially in spring. The seasonal mean AOD in East China is high in both spring and summer but low in fall and winter. However, the AOD averaged over India is highest in summer and lower in spring, fall, and winter. Analysis reveals that AOD is more closely related to changes in surface wind speed in East China, while no obvious relation is found between precipitation and the AOD distribution on the seasonal timescale. As aerosols are mainly distributed in the atmospheric boundary layer (ABL), the stability of the ABL represented by Richardson number (Ri) is closely correlated with spatial distribution of AOD. The upper and lower tropospheric circulation patterns significantly differ between East China and India, resulting in different effects on the AOD. The effect of advection associated with lower tropospheric circulation on the AOD and the influence of convergence and divergence on the AOD distribution play different roles in maintaining the AOD in East China and India. These results improve our understanding of the mechanism responsible for and differences among the aerosol changes in East China and India.

Key words

aerosol optical depth (AOD) monsoon circulation East China India 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. An, L. Z., J. Jiang, and Y. Zhou, 2015: Impacts of East Asian summer monsoon circulation on aerosol distribution. J. Meteor. Sci., 35, 26–32, doi: 10.3969/2014jms.0003. (in Chinese)Google Scholar
  2. Bao, Z. H., C. Z. Zhu, R. Hulugalla, et al., 2008: Spatial and temporal characteristics of aerosol optical depth over East Asia and their association with wind fields. Meteor. Appl., 15, 455–463, doi: 10.1002/met.87.CrossRefGoogle Scholar
  3. Che, H. Z., X. Y. Zhang, Y. Li, et al., 2007: Horizontal visibility trends in China 1981–2005. Geophys. Res. Lett., 34, L24706, doi: 10.1029/2007GL031450.CrossRefGoogle Scholar
  4. Che, H. Z., B. Qi, H. J. Zhao, et al., 2018: Aerosol optical properties and direct radiative forcing based on measurements from the China Aerosol Remote Sensing Network (CARSNET) in eastern China. Atmos. Chem. Phys., 18, 405–425, doi: 10.5194/acp-18-405-2018.CrossRefGoogle Scholar
  5. Chen, J. L., and R. H. Huang, 2006: The comparison of climatological characteristics among Asian and Australian monsoon subsystems. Part I: The wind structure of summer monsoon. Chinese J. Atmos. Sci., 30, 1091–1102, doi: 10.3878/j.issn. 1006–9895.2006.06.04. (in Chinese)Google Scholar
  6. Chung, C. E., V. Ramanathan, D. Kim, et al., 2005: Global anthropogenic aerosol direct forcing derived from satellite and ground-based observations. J. Geophys. Res. Atmos., 110, D24207, doi: 10.1029/2005JD006356.CrossRefGoogle Scholar
  7. Fan, J. W., L. R. Leung, Z. Q. Li, et al., 2012: Aerosol impacts on clouds and precipitation in eastern China: Results from bin and bulk microphysics. J. Geophys. Res. Atmos., 117, D00K36, doi: 10.1029/2011JD016537.Google Scholar
  8. Guan, Z. Y., Z. Y. Guan, J. X. Cai, et al., 2013: Mean climatology and interannual variations of the atmospheric stability of planetary boundary layer in the eastern China during boreal summer. Trans. Atmos. Sci., 36, 734–741, doi: 10.13878/j.cnki. dqkxxb.2013.06.010. (in Chinese)Google Scholar
  9. Gautam, R., N. C. Hsu, K. M. Lau, et al., 2009: Aerosol and rainfall variability over the Indian monsoon region: Distributions, trends and coupling. Ann. Geophys., 27, 3691–3703, doi: 10.5194/angeo-27-3691-2009.CrossRefGoogle Scholar
  10. Guo, J., and G. Y. Ren, 2006: Variation characteristics of sunshine duration in Tianjin in recent 40 years and influential factors. Meteor. Sci. Technol., 34, 415–419, doi: 10.19517/j. 1671–6345.2006.04.014. (in Chinese)Google Scholar
  11. Han, X., M. G. Zhang, J. H. Tao, et al., 2013: Modeling aerosol impacts on atmospheric visibility in Beijing with RAMSCMAQ. Atmos. Environ., 72, 177–191, doi: 10.1016/j.atmosenv. 2013.02.030.CrossRefGoogle Scholar
  12. Hsu, N. C., M. J. Jeong, C. Bettenhausen, et al., 2013: Enhanced deep blue aerosol retrieval algorithm: The second generation. J. Geophys. Res. Atmos., 118, 9296–9315, doi: 10.1002/jgrd.50712.CrossRefGoogle Scholar
  13. Huang, R. H., Z. Z. Zhang, G. Huang, et al., 1998: Characteristics of the water vapor transport in East Asian monsoon region and its difference from that in South Asian monsoon region in summer. Chinese J. Atmos. Sci., 22, 460–469, doi: 10.3878/j.issn.1006-9895.1998.04.08. (in Chinese)Google Scholar
  14. IPCC, 2007: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. S. Solomon, D. Qin, M. Manning, et al., Eds., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 131–217.Google Scholar
  15. IPCC, 2014: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. T. F. Stocker, D. Qin, G. -K. Plattner, et al., Eds., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 599–601.Google Scholar
  16. Kalnay, E., M. Kanamitsu, R. Kistler, et al., 1996: The NCEP/NCAR 40-year reanalysis project. Bull. Amer. Meteor. Soc., 77, 437–472, doi: 10.1175/1520-0477(1996)077<0437:TNYR P>2.0.CO;2.CrossRefGoogle Scholar
  17. Li, S., T. J. Wang, M. Xie, et al., 2015: Observed aerosol optical depth and angstrom exponent in urban area of Nanjing, China. Atmos. Environ., 123, 350–356, doi: 10.1016/j.atmos env.2015.02.048.CrossRefGoogle Scholar
  18. Li, Z. Q., F. Niu, J. W. Fan, et al., 2011: Long-term impacts of aerosols on the vertical development of clouds and precipitation. Nat. Geosci., 4, 888–894, doi: 10.1038/ngeo1313.CrossRefGoogle Scholar
  19. Liu, X. D., L. B. Yan, P. Yang, et al., 2011: Influence of Indian summer monsoon on aerosol loading in East Asia. J. Appl. Meteor. Climatol., 50, 523–533, doi: 10.1175/2010JAMC 2414.1.CrossRefGoogle Scholar
  20. Mao, Y. H., H. Liao, and H. S. Chen, 2017: Impacts of East Asian summer and winter monsoons on interannual variations of mass concentrations and direct radiative forcing of black carbon over eastern China. Atmos. Chem. Phys., 17, 4799–4816, doi: 10.5194/acp-17-4799-2017.CrossRefGoogle Scholar
  21. Menon, S., J. Hansen, L. Nazarenko, et al., 2002: Climate effects of black carbon aerosols in China and India. Science, 297, 2250–2253, doi: 10.1126/science.1075159.CrossRefGoogle Scholar
  22. Mu, Q., and H. Liao, 2014: Simulation of the interannual variations of aerosols in China: Role of variations in meteorological parameters. Atmos. Chem. Phys., 14, 9597–9612, doi: 10.5194/acp-14-9597-2014.CrossRefGoogle Scholar
  23. Ohara, T., H. Akimoto, J. Kurokawa, et al., 2007: An Asian emission inventory of anthropogenic emission sources for the period 1980–2020. Atmos. Chem. Phys., 7, 4419–4444, doi: 10.5194/acp-7-4419-2007.CrossRefGoogle Scholar
  24. Ramanathan, V., F. Li, M. V. Ramana, et al., 2007: Atmospheric brown clouds: Hemispherical and regional variations in longrange transport, absorption, and radiative forcing. J. Geophys. Res. Atmos., 112, D22S21, doi: 10.1029/2006JD008124.CrossRefGoogle Scholar
  25. Richardson, L. F., 1920: The supply of energy from and to atmospheric eddies. Proc. R. Soc. Lond. A, 97, 354–373, doi: 10.1098/rspa.1920.0039.CrossRefGoogle Scholar
  26. Sayer, A. M., L. A. Munchak, N. C. Hsu, et al., 2014: MODIS collection 6 aerosol products: Comparison between Aqua’s e-Deep Blue, Dark Target, and “merged” data sets, and usage recommendations. J. Geophys. Res. Atmos., 119, 13,965–13,989, doi: 10.1002/2014JD022453.CrossRefGoogle Scholar
  27. Shen, X. J., J. Y. Sun, X. Y. Zhang, et al., 2015: Characterization of submicron aerosols and effect on visibility during a severe haze–fog episode in Yangtze River Delta, China. Atmos. Environ., 120, 307–316, doi: 10.1016/j.atmosenv.2015.09.011.CrossRefGoogle Scholar
  28. Streets, D. G., T. Y. Nancy, A. Hajime, et al., 2000: Sulfur dioxide emissions in Asia in the period 1985–1997. Atmos. Environ., 34, 4413–4424, doi: 10.1016/S1352-2310(00)00187-4.CrossRefGoogle Scholar
  29. Sun, Y., Z. Y. Guan, F. H. Ma, et al., 2015: Linkage between AOD and surface solar radiation variability in association with East Asian summer monsoon circulation changes: Role of seasonal trends. Trans. Atmos. Sci., 38, 165–174, doi: 10.13878/j. cnki.dqkxxb.20141011008. (in Chinese)Google Scholar
  30. Tao, S. Y., and L. X. Chen, 1985: The East Asian summer monsoon. Proceedings of International Conference on Monsoonin the Far East, Tokyo, 1–11.Google Scholar
  31. Wang, T. J., B. L. Zhuang, S. Li, et al., 2015: The interactions between anthropogenic aerosols and the East Asian summer monsoon using RegCCMS. J. Geophys. Res. Atmos., 120, 5602–5621, doi: 10.1002/2014JD022877.CrossRefGoogle Scholar
  32. Wu, D., X. J. Wu, F. Li, et al., 2010: Temporal and spatial variation of haze during 1951–2005 in Chinese mainland. Acta Meteor. Sinica, 68, 680–688, doi: 10.11676/qxxb2010.066. (in Chinese)Google Scholar
  33. Wu, G. X., Z. Q. Li, C. B. Fu, et al., 2015: Advances in studying interactions between aerosols and monsoon in China. Scientia Sinica Terrae, 45, 1609–1627, doi: 10.1007/s11430-015-5198-z. (in Chinese)Google Scholar
  34. Xie, P., and P. A. Arkin, 1997: Global precipitation: A 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull. Amer. Meteor. Soc., 78, 2539–2558, doi: 10.1175/1520-0477(1997)078<2539: GPAYMA>2.0.CO;2.CrossRefGoogle Scholar
  35. Yan, L. B., X. D. Liu, P. Yang, et al., 2011: Study of the impact of summer monsoon circulation on spatial distribution of aerosols in East Asia based on numerical simulation. J. Appl. Meteor. Climatol., 50, 2270–2282, doi: 10.1175/2011JAMC-D-11-06.1.CrossRefGoogle Scholar
  36. Yoon, S. C., S. W. Kim, S. J. Choi, et al., 2010: Regional-scale relationships between aerosol and summer monsoon circulation, and precipitation over Northeast Asia. Asia–Pacific J. Atmos. Sci., 46, 279–286, doi: 10.1007/s13143-010-1002-3.CrossRefGoogle Scholar
  37. Zhang, H., Z. L. Wang, P. W. Guo, et al., 2009: A modeling study of the effects of direct radiative forcing due to carbonaceous aerosol on the climate in East Asia. Adv. Atmos. Sci., 26, 57–66, doi: 10.1007/s00376-009-0057-5.CrossRefGoogle Scholar
  38. Zhang, H., Z. L. Wang, Z. Z. Wang, et al., 2012: Simulation of direct radiative forcing of aerosols and their effects on East Asian climate using an interactive AGCM-Aerosol coupled system. Climate Dyn., 38, 1675–1693, doi: 10.1007/s00382-011-1131-0.CrossRefGoogle Scholar
  39. Zhang, L., H. Liao, and J. P. Li, 2010: Impacts of Asian summer monsoon on seasonal and interannual variations of aerosols over eastern China. J. Geophys. Res. Atmos., 115, D00K05, doi: 10.1029/2009JD012299.CrossRefGoogle Scholar
  40. Zhang, L., J. Y. Sun, X. J. Shen, et al., 2015: Observations of relative humidity effects on aerosol light scattering in the Yangtze River Delta of China. Atmos. Chem. Phys., 15, 8439–8454, doi: 10.5194/acp-15-8439-2015.CrossRefGoogle Scholar
  41. Zhang, X. Y., Y. Q. Wang, T. Niu, et al., 2012: Atmospheric aerosol compositions in China: Spatial/temporal variability, chemical signature, regional haze distribution and comparisons with global aerosols. Atmos. Chem. Phys., 12, 779–799, doi: 10.5194/acp-12-779-2012.CrossRefGoogle Scholar
  42. Zhao, T. L., S. L. Gong, X. Y. Zhang, et al., 2003: Modeled sizesegregated wet and dry deposition budgets of soil dust aerosol during ACE-Asia 2001: Implications for trans-Pacific transport. J. Geophys. Res. Atmos., 108, 8665, doi: 10.1029/2002JD003363.CrossRefGoogle Scholar
  43. Zhong, J. T., X. Y. Zhang, Y. Q. Wang, et al., 2017: Relative contributions of boundary-layer meteorological factors to the explosive growth of PM2.5 during the red-alert heavy pollution episodes in Beijing in December 2016. J. Meteor. Res., 31, 809–819, doi: 10.1007/s13351-017-7088-0.CrossRefGoogle Scholar
  44. Zhou, B., D. Y. Liu, J. S. Wei, et al., 2015: A preliminary analysis on scavenging effect of precipitation on aerosol particles. Resour. Environ. Yangtze River Basin, 24, 160–170. (in Chinese)Google Scholar
  45. Zhou, C., H. Zhang, S. Y. Zhao, et al., 2018: On effective radiative forcing of partial internally and externally mixed aerosols and their effects on global climate. J. Geophys. Res. Atmos., 123, 401–423, doi: 10.1002/2017JD027603.CrossRefGoogle Scholar
  46. Zhu, J., H. Z. Che, X. A. Xia, et al., 2014: Column-integrated aerosol optical and physical properties at a regional background atmosphere in North China Plain. Atmos. Environ., 84, 54–64, doi: 10.1016/j.atmosenv.2013.11.019.CrossRefGoogle Scholar
  47. Zhu, J. L., H. Liao, and J. P. Li, 2012: Increases in aerosol concentrations over eastern China due to the decadal-scale weakening of the East Asian summer monsoon. Geophys. Res. Lett., 39, L09809, doi: 10.1029/2012GL051428.CrossRefGoogle Scholar
  48. Zhuang, B. L., T. J. Wang, S. Li, et al., 2014: Optical properties and radiative forcing of urban aerosols in Nanjing, China. Atmos. Environ., 83, 43–52, doi: 10.1016/j.atmosenv.2013. 10.052.CrossRefGoogle Scholar

Copyright information

© The Chinese Meteorological Society and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Key Laboratory of Meteorological Disaster, Ministry of Education/Joint International Research Laboratory of Climate and Environment Change, Collaborative Innovation Center on Forecast and Evaluation of Meteorological DisastersNanjing University of Information Science & TechnologyNanjingChina

Personalised recommendations