Advertisement

Journal of Meteorological Research

, Volume 32, Issue 3, pp 456–468 | Cite as

Simulation of Non-Homogeneous CO2 and Its Impact on Regional Temperature in East Asia

  • Xiaodong Xie
  • Xiaoxian Huang
  • Tijian Wang
  • Mengmeng Li
  • Shu Li
  • Pulong Chen
Article

Abstract

Carbon dioxide (CO2) is an important greenhouse gas that influences regional climate through disturbing the earth’s energy balance. The CO2 concentrations are usually prescribed homogenously in most climate models and the spatiotemporal variations of CO2 are neglected. To address this issue, a regional climate model (RegCM4) is modified to investigate the non-homogeneous distribution of CO2 and its effects on regional longwave radiation flux and temperature in East Asia. One-year simulation is performed with prescribed surface CO2 fluxes that include fossil fuel emission, biomass burning, air–sea exchange, and terrestrial biosphere flux. Two numerical experiments (one using constant prescribed CO2 concentrations in the radiation scheme and the other using the simulated CO2 concentrations that are spatially non-homogeneous) are conducted to assess the impact of non-homogeneous CO2 on the regional longwave radiation flux and temperature. Comparison of CO2 concentrations from the model with the observations from the GLOBALVIEW-CO2 network suggests that the model can well capture the spatiotemporal patterns of CO2 concentrations. Generally, high CO2 mixing ratios appear in the heavily industrialized eastern China in cold seasons, which probably relates to intensive human activities. The accommodation of non-homogeneous CO2 concentrations in the radiative transfer scheme leads to an annual mean change of–0.12 W m–2 in total sky surface upward longwave flux in East Asia. The experiment with non-homogeneous CO2 tends to yield a warmer lower troposphere. Surface temperature exhibits a maximum difference in summertime, ranging from–4.18 K to 3.88 K, when compared to its homogeneous counterpart. Our results indicate that the spatial and temporal distributions of CO2 have a considerable impact on regional longwave radiation flux and temperature, and should be taken into account in future climate modeling.

Key words

CO2 concentrations heterogeneity longwave flux temperature East Asia 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

The authors thank Jingxian Liu for help with the language check. We also thank the anonymous reviewers for their constructive and valuable comments on this paper.

References

  1. Ahmadov R., C. Gerbig, R. Kretschmer, et al., 2007: Mesoscale covariance of transport and CO2 fluxes: Evidence from observations and simulations using the WRF-VPRM coupled atmosphere–biosphere model. J. Geophys. Res, 112, D22107, doi: 10.1029/2007JD008552.CrossRefGoogle Scholar
  2. Ahmadov R., C. Gerbig, R. Kretschmer, et al., 2009: Comparing high resolution WRF-VPRM simulations and two global CO2 transport models with coastal tower measurements of CO2. Biogeosciences, 6, 807–817, doi: 10.5194/bg-6-807-2009.CrossRefGoogle Scholar
  3. Ballav S., P. K. Patra, M. Takigawa, et al., 2012: Simulation of CO2 concentration over East Asia using the regional transport model WRF-CO2. J. Meteor. Soc. Japan, 90, 959–976, doi: 10.2151/jmsj.2012-607.CrossRefGoogle Scholar
  4. Ballav S., P. K. Patra, Y. Sawa, et al., 2016: Simulation of CO2 concentrations at Tsukuba tall tower using WRF-CO2 tracer transport model. J. Earth Syst. Sci., 125, 47–64, doi: 10.1007/s12040-015-0653-y.CrossRefGoogle Scholar
  5. Chaudhari P. R., D. G. Gajghate, S. Dhadse, et al., 2007: Monitoring of environmental parameters for CO2 sequestration: A case study of Nagpur City, India. Environ. Monit. Assess., 135, 281–290, doi: 10.1007/s10661-007-9649-7.CrossRefGoogle Scholar
  6. Cheng Y. L., X. Q. An, F. H. Yun, et al., 2013: Simulation of CO2 variations at Chinese background atmospheric monitoring stations between 2000 and 2009: Applying a CarbonTracker model. Chinese. Sci. Bull., 58, 3986–3993, doi: 10.1007/s11434-013-5895-y.CrossRefGoogle Scholar
  7. Chevillard A., U. Karstens, P. Ciais, et al., 2002: Simulation of atmospheric CO2 over Europe and western Siberia using the regional scale model REMO. Tellus B, 54, 872–894, doi: 10.3402/tellusb.v54i5.16737.CrossRefGoogle Scholar
  8. Collins W. D., P. J. Rasch, B. A. Boville, et al., 2004: Description of the NCAR Community Atmosphere Model (CAM 3.0). National Center for Atmospheric Research, Boulder, Colorado, USA, 210 pp.Google Scholar
  9. Dickinson R. E., A. Henderson-Sellers, and P. J. Kennedy, 1993: Biosphere–Atmosphere Transfer Scheme (BATS) Version 1e as Coupled to the NCAR Community Climate Model. Colorado, National Center for Atmospheric Research, Climate and Global Dynamics Division, 69 pp.Google Scholar
  10. Dlugokencky E., and P. Tans, 2017: Trends in Atmospheric Carbon Dioxide. Earth System Research Laboratory, National Oceanic and Atmospheric Administration (NOAA/ESRL). Available at www.esrl.noaa.gov/gmd/ccgg/trends/global.html. Accessed on 8 May 2018.Google Scholar
  11. Dudhia J., D. Gill, K. Manning, et al., 2004: SU/NCAR Mesoscale Modeling System Tutorial Class Notes and User’s Guide: MM5 Modeling System Version 3. Boulder, National Center for Atmospheric Research, 390 pp.Google Scholar
  12. Elguindi N., X. Q. Bi, F. Giorgi, et al., 2010: RegCM Version 4.0 User’s Guide. ICTP, Trieste, Italy, 24 pp.Google Scholar
  13. Feng L., P. I. Palmer, Y. Yang, et al., 2011: Evaluating a 3-D transport model of atmospheric CO2 using ground-based, aircraft, and space-borne data. Atmos. Chem. Phys., 11, 2789–2803, doi: 10.5194/acp-11-2789-2011.CrossRefGoogle Scholar
  14. Ge C., M. G. Zhang, L. Y. Zhu, et al., 2011: Simulated seasonal variations in wet acid depositions over East Asia. J. Air Waste Manag. Assoc., 61, 1246–1261, doi: 10.1080/10473289.2011.596741.CrossRefGoogle Scholar
  15. Giorgi F., J. S. Pal, X. Bi, et al., 2006: Introduction to the TAC special issue: The RegCNET network. Theor. Appl. Climatol., 86, 1–4, doi: 10.1007/s00704-005-0199-z.CrossRefGoogle Scholar
  16. Giorgi F., E. Coppola, F. Solmon, et al., 2012: RegCM4: Model description and preliminary tests over multiple CORDEX domains. Climate Res., 52, 7–29, doi: 10.3354/cr01018.CrossRefGoogle Scholar
  17. Grell G. A., 1993: Prognostic evaluation of assumptions used by cumulus parameterizations. Mon. Wea. Rev., 121, 764–787, doi: 10.1175/1520-0493(1993)121<0764:PEOAUB>2.0.CO;2.CrossRefGoogle Scholar
  18. Grell G. A., J. Dudhia, and D. Stauffer, 1994: A Description of the Fifth-Generation Penn State/NCAR Mesoscale Model (MM5). NCAR Technical Note NCAR/TN-398+STR, Boulder, Colorado, NCAR, 128 pp, doi: 10.5065/D60Z 716B.Google Scholar
  19. Guan D. B., G. P. Peters, C. L. Weber, et al., 2009: Journey to world top emitter: An analysis of the driving forces of China’s recent CO2 emissions surge. Geophys. Res. Lett., 36, L04709, doi: 10.1029/2008gl036540.CrossRefGoogle Scholar
  20. Holtslag A. A. M., E. I. F. De Bruijn, and H. L. Pan, 1990: A high resolution air mass transformation model for short-range weather forecasting. Mon. Wea. Rev., 118, 1561–1575, doi: 10.1175/1520-0493(1990)118<1561:AHRAMT>2.0.CO;2.CrossRefGoogle Scholar
  21. Huang X. X., T. J. Wang, R. Talbot, et al., 2015: Temporal characteristics of atmospheric CO2 in urban Nanjing, China. Atmos. Res., 153, 437–450, doi: 10.1016/j.atmosres.2014.09.007.CrossRefGoogle Scholar
  22. Iacono M. J., E. J. Mlawer, S. A. Clough, et al., 2000: Impact of an improved longwave radiation model, RRTM, on the energy budget and thermodynamic properties of the NCAR community climate model, CCM3. J. Geophys. Res., 105, 14873–14890, doi: 10.1029/2000JD900091.CrossRefGoogle Scholar
  23. Kiehl J. T., and V. Ramanathan, 1983: CO2 radiative parameterization used in climate models: Comparison with narrow band models and with laboratory data. J. Geophys. Res., 88, 5191–5202, doi: 10.1029/JC088iC09p05191.CrossRefGoogle Scholar
  24. Kiehl J. T., J. J. Hack, G. B. Bonan, et al., 1996: Description of the NCAR Community Climate Model (CCM3). NCAR/TN-420+STR, Boulder, Colorado, National Center for Atmospheric Research, 55–60, doi: 10.5065/D6FF3Q99.Google Scholar
  25. Kou X. X., M. G. Zhang, and Z. Peng, 2013: Numerical simulation of CO2 concentrations in East Asia with RAMS-CMAQ. Atmos. Ocean. Sci. Lett., 6, 179–184, doi: 10.3878/j.issn.1674-2834.13.0022.CrossRefGoogle Scholar
  26. Kou X. X., M. G. Zhang, Z. Peng, et al., 2015: Assessment of the biospheric contribution to surface atmospheric CO2 concentrations over East Asia with a regional chemical transport model. Adv. Atmos. Sci., 32, 287–300, doi: 10.1007/s00376-014-4059-6.CrossRefGoogle Scholar
  27. Kou X. X., X. J. Tian, M. G. Zhang, et al., 2017: Accounting for CO2 variability over East Asia with a regional joint inversion system and its preliminary evaluation. J. Meteor. Res., 31, 834–851, doi: 10.1007/s13351-017-6149-8.CrossRefGoogle Scholar
  28. Krol M., S. Houweling, B. Bregman, et al., 2005: The two-way nested global chemistry-transport zoom model TM5: Algorithm and applications. Atmos. Chem. Phys., 5, 417–432, doi: 10.5194/acp-5-417-2005.CrossRefGoogle Scholar
  29. Lau C. C. S., J. C. Lam, and L. Yang, 2007: Climate classification and passive solar design implications in China. Energy Convers. Manage., 48, 2006–2015, doi: 10.1016/j.enconman.2007.01.004.CrossRefGoogle Scholar
  30. Liu L. X., L. X. Zhou, X. C. Zhang, et al., 2009: The characteristics of atmospheric CO2 concentration variation of four national background stations in China. Sci. China Ser. D Earth Sci., 52, 1857–1863, doi: 10.1007/s11430-009-0143-7.CrossRefGoogle Scholar
  31. Masarie K. A., and P. P. Tans, 1995: Extension and integration of atmospheric carbon dioxide data into a globally consistent measurement record. J. Geophys. Res., 100, 11593–11610, doi: 10.1029/95JD00859.CrossRefGoogle Scholar
  32. Nassar R., D. B. A. Jones, P. Suntharalingam, et al., 2010: Modeling global atmospheric CO2 with improved emission inventories and CO2 production from the oxidation of other carbon species. Geosci. Model Dev., 3, 689–716, doi: 10.5194/gmd-3-689-2010.CrossRefGoogle Scholar
  33. Oleson K. W., G. Y. Niu, Z. L. Yang, et al., 2008: Improvements to the Community Land Model and their impact on the hydrological cycle. J. Geophys. Res., 113, G01021, doi: 10.1029/2007JG000563.CrossRefGoogle Scholar
  34. Olivier J. G. J., G. Janssens-Maenhout, M. Muntean, et al., 2015: Trends in Global CO2 Emissions: 2015 Report. The Hague, PBL Netherlands Environmental Assessment Agency, 80 pp.Google Scholar
  35. Peters W., A. R. Jacobson, C. Sweeney, et al., 2007: An atmospheric perspective on North American carbon dioxide exchange: CarbonTracker. Proc. Natl. Acad. Sci. USA, 104, 18925–18930, doi: 10.1073/pnas.0708986104.CrossRefGoogle Scholar
  36. Pillai D., C. Gerbig, R. Ahmadov, et al., 2011: High-resolution simulations of atmospheric CO2 over complex terrain-representing the Ochsenkopf mountain tall tower. Atmos. Chem. Phys., 11, 7445–7464, doi: 10.5194/acp-11-7445-2011.CrossRefGoogle Scholar
  37. Sahay S., and C. Ghosh, 2013: Monitoring variation in greenhouse gases concentration in urban environment of Delhi. Environ. Monit. Assess., 185, 123–142, doi: 10.1007/s10661-012-2538-8.CrossRefGoogle Scholar
  38. Stocker T., D. Qin, G. Plattner, et al., 2013: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom, New York, NY, USA, 1535 pp, doi: 10.1017/CBO9781107415324.Google Scholar
  39. Uppala S., D. Dee, S. Kobayashi, et al., 2008: Towards a climate data assimilation system: Status update of ERA-Interim. ECMWF Newsletter, 115, 12–18, doi: 10.21957/byinox4wot.Google Scholar
  40. Wang H. J., and J. W. Liu, 2008: Global Change and Human Adaptation. China Forestry Press, Beijing, 347 pp. (in Chinese)Google Scholar
  41. World Meteorological Organization, 2017: WMO Greenhouse Gas Bulletin: The State of Greenhouse Gases in the Atmosphere Based on Global Observations Through 2015. Switzerland, WMO, 8 pp.Google Scholar
  42. Yang C. Y., H. J. Wang, S. J. Han, et al., 2012: Climate simulation for dynamic heterogeneous distribution of atmospheric CO2 concentration. Chinese J. Geophys., 55, 2809–2825, doi: 10.6038/j.issn.0001-5733.2012.09.001. (in Chinese)Google Scholar

Copyright information

© The Chinese Meteorological Society and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Xiaodong Xie
    • 1
    • 3
    • 4
  • Xiaoxian Huang
    • 2
  • Tijian Wang
    • 1
    • 3
    • 4
  • Mengmeng Li
    • 1
    • 3
    • 4
  • Shu Li
    • 1
    • 3
    • 4
  • Pulong Chen
    • 1
    • 3
    • 4
  1. 1.School of Atmospheric SciencesNanjing UniversityNanjingChina
  2. 2.College of Plant Science & TechnologyHuazhong Agricultural UniversityWuhanChina
  3. 3.Joint Laboratory for Climate Prediction Studies of China Meteorological Administration and Nanjing UniversityNanjingChina
  4. 4.Collaborative Innovation Center for Climate Change of Jiangsu ProvinceNanjingChina

Personalised recommendations