Journal of Meteorological Research

, Volume 32, Issue 5, pp 758–767 | Cite as

Effects of Updated RegCM4 Land Use Data on Near-Surface Temperature Simulation in China

  • Yulong Ren
  • Yaohui LiEmail author
  • Zhaoxia Pu
  • Tiejun Zhang
  • Haixia Duan
  • Wei Wang
Special Collection on Weather and Climate under Complex Terrain and Variable Land Surfaces: Observations and Numerical Simulations


Biogeophysical effects of land use and land cover (LULC) changes play a significant role in modulating climate on various spatial scales. In this study, a set of recent LULC products with a spatial resolution of 500 m was developed in China for update in RegCM4 (regional climate model version 4). Two sets of comparative numerical experiments were conducted to study the effects of LULC changes on near-surface temperature simulation. The results show that after LULC changes, areas of crops and mixed woodlands as well as urban areas increase over entire China, accompanied with greatly expanded mixed farming and forests/field mosaics in southern China, and reduced areas of 1) irrigated crops and short grasses in northern China and the Tibetan Plateau, and 2) semi-desert and desert in northwestern China. Improvements in the LULC data clearly result in more accurate simulations of the near-surface temperature. Specifically, increasing latent heat and longwave albedo due to enhanced LULC in certain areas lead to reduction in land surface temperature (LST), while changes in shortwave albedo and sensible heat also exert a great influence on the LST. Overall, these parameter adjustments reduce the biases in near-surface temperature simulation.

Key words

land use and land cover RegCM4 (regional climate model version 4) temperature simulation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Chen, C., Y. M. Pang, X. B. Pan, et al.,2015: Impacts of climate change on cotton yield in China from 1961 to 2010 based on provincial data. J. Meteor. Res., 29, 515–524, doi: 10.1007/s13351-014-4082-7.CrossRefGoogle Scholar
  2. Chen, L., and P. A. Dirmeyer, 2016: Adapting observationally based metrics of biogeophysical feedbacks from land cover/land use change to climate modeling. Environ. Res. Lett., 11, 034002, doi: 10.1088/1748-9326/11/3/034002.CrossRefGoogle Scholar
  3. Dai, A. G., 2011: Drought under global warming: A review. WIREs Climate Change, 2, 45–65, doi: 10.1002/wcc.81.CrossRefGoogle Scholar
  4. Dickinson, R. E., A. Henderson-Sellers, and P. J. Kennedy, 1993: Biosphere–Atmosphere Transfer Scheme (BATS) Version 1e as Coupled to the NCAR Community Climate Model. NCAR Technical Note NCAR/TN-387+STR, Boulder, NCAR, 72 pp, doi: 10.5065/D67W6959.Google Scholar
  5. Dickinson, R. E., A. Henderson-Sellers, P. J. Kennedy, et al.,1986: Biosphere-Atmosphere Transfer Scheme (BATS) for the NCAR Community Climate Model. NCAR Technical Note NCAR/TN-275-+STR, Boulder, NCAR, 80 pp, doi: 10.5065/D6668B58.Google Scholar
  6. Dickinson, R. E., R. M. Errico, F. Giorgi, et al.,1989: A regional climate model for the western United States. Climatic Change, 15, 383–422, doi: 10.1007/bf00240465.Google Scholar
  7. Fang, Y. L., S. F. Sun, Q. Li, et al.,2010: The optimization of parameters of land surface model in arid region and the simulation of land–atmosphere interaction. Chinese J. Atmos. Sci., 34, 290–306, doi: 10.3878/j.issn.1006-9895.2010.02.05. (in Chinese)Google Scholar
  8. Giorgi, F., and G. T. Bates, 1989: The climatological skill of a regional model over complex terrain. Mon. Wea. Rev., 117, 2325–2347, doi: 10.1175/1520-0493(1989)117<2325:TCSOAR> 2.0.CO;2.CrossRefGoogle Scholar
  9. Giorgi, F., M. R. Marinucci, and G. T. Bates, 1993a: Development of a second-generation regional climate model (RegCM2). Part I: Boundary-layer and radiative transfer processes. Mon. Wea. Rev., 121, 2794–2813, doi: 10.1175/1520-0493(1993) 121<2794:DOASGR>2.0.CO;2.Google Scholar
  10. Giorgi, F., M. R. Marinucci, G. T. Bates, et al.,1993b: Development of a second-generation regional climate model (RegCM2). Part II: Convective processes and assimilation of lateral boundary conditions. Mon. Wea. Rev., 121, 2814–2832, doi: 10.1175/1520-0493(1993)121<2814:DOASGR>2.0.CO;2.Google Scholar
  11. Giorgi, F., X. Bi, and Y. Qian, 2003: Indirect vs. direct effects of anthropogenic sulfate on the climate of East Asia as simulated with a regional coupled climate–chemistry/aerosol model. Climatic Change, 58, 345–376, doi: 10.1023/A:10239460 10350.CrossRefGoogle Scholar
  12. Gong, P., 2009: Accuracy test on global land cover map based on the global flux observation station. Prog. Nat. Sci., 19, 754–759, doi: 10.3321/j.issn:1002-008X.2009.07.008. (in Chinese)CrossRefGoogle Scholar
  13. Grell, G. A., 1993: Prognostic evaluation of assumptions used by cumulus parameterizations. Mon. Wea. Rev., 121, 764–787, doi: 10.1175/1520-0493(1993)121<0764:PEOAUB>2.0.CO;2.CrossRefGoogle Scholar
  14. Guan, X. D., J. P. Huang, and R. X. Guo, 2017: Changes in aridity in response to the global warming hiatus. J. Meteor. Res., 31, 117–125, doi: 10.1007/s13351-017-6038-1.CrossRefGoogle Scholar
  15. He, J. J., Y. Yu, N. Liu, et al.,2014: Impact of land surface information on WRF’s performance in complex terrain area. Chinese J. Atmos. Sci., 38, 484–498, doi: 10.3878/j.issn.1006-9895.2013.13186. (in Chinese)Google Scholar
  16. Holtslag, A. A. M., E. I. F. De Bruijn, and H. L Pan, 1990: A high resolution air mass transformation model for short-range weather forecasting. Mon. Wea. Rev., 118, 1561–1575, doi: 10.1175/1520-0493(1990)118<1561:AHRAMT>2.0.CO;2.CrossRefGoogle Scholar
  17. Huang, B. W., 1989: Outline of comprehensive natural zoning in China. J. Geograph. Antholo., 21, 10–20. (in Chinese)Google Scholar
  18. Kiehl, J. T., J. J. Hack, G. B. Bonan, et al.,1996: Description of the NCAR Community Climate Model (CCM3). NCAR Technical Note NCAR/TN-420+STR, Boulder, NCAR, 152 pp, doi: 10.5065/D6FF3Q99.Google Scholar
  19. Li, Y. J., and H. Q. Lyu, 2017: Evolution of agricultural drought in southern China and its influence in recent 50 years. J. Arid Meteor., 35, 724–733. (in Chinese)Google Scholar
  20. Li, Y. P., and Y. H. Li, 2017: Advances in adaptability of meteorological drought indices in China. J. Arid Meteor., 35, 709–723. (in Chinese)Google Scholar
  21. Liu, Y. L., J. P. Yan, and M. Y. Cen, 2016: The relationship between precipitation heterogeneity and meteorological drought/flood in China. J. Meteor. Res., 30, 758–770, doi: 10.1007/s13351-016-5993-2.CrossRefGoogle Scholar
  22. Meng, X. X., and C. B. Fu, 2009: Comparative evaluation of land surface models TSBA, LSM, and COLM at Tongyu station in semi-arid area. Climatic Environ. Res., 14, 352–362. (in Chinese)Google Scholar
  23. Pal, J. S., E. E. Small, and E. A. B. Eltahir, 2000: Simulation of regional-scale water and energy budgets: Representation of subgrid cloud and precipitation processes within RegCM. J. Geophys. Res. Atmos., 105, 29579–29594, doi: 10.1029/2000 JD900415.CrossRefGoogle Scholar
  24. Ran, Y. H., X. Li, and L. Lu, 2010: Evaluation of four remote sensing based land cover products over China. Int. J. Remote Sens., 31, 391–401, doi: 10.1080/01431160902893451.CrossRefGoogle Scholar
  25. Reijmer, C. H., E. Van Meijgaard, and M. R. Van Den Broeke, 2004: Numerical studies with a regional atmospheric climate model based on changes in the roughness length for momentum and heat over Antarctica. Bound.-Layer Meteor., 111, 313–337, doi: 10.1023/ Scholar
  26. Ren, G. Y., Y. H. Ding, and G. L. Tang, 2017: An overview of mainland China temperature change research. J. Meteor. Res., 31, 3–16, doi: 10.1007/s13351-017-6195-2.CrossRefGoogle Scholar
  27. Stocker, T. F., D. Qin, G. K. Plattner, et al.,2013: Climate Change 2013: The Physical Science Basis. Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1535 pp, doi: 10.1017/CBO9781107415324.Google Scholar
  28. Tang, J. Z., J. Wang, D. He, et al.,2016: Comparison of the impacts of climate change on potential productivity of different staple crops in the agro-pastoral ecotone of North China. J. Meteor. Res., 30, 983–997, doi: 10.1007/s13351-016-6023-0.CrossRefGoogle Scholar
  29. Wang, H. J., J. Q. Sun, H. P. Chen, et al.,2012: Extreme climate in China: Facts, simulation and projection. Meteor. Z., 21, 279–304, doi: 10.1127/0941-2948/2012/0330.CrossRefGoogle Scholar
  30. Wang, Z. L, J. Y. Feng, and S. Sha, 2017: Drought events and its influence in spring of 2017 in China. J. Arid Meteor., 35, 528–533. (in Chinese)Google Scholar
  31. Wen, X. Y., S. W. Wang, J. H. Zhu, et al.,2006: An overview of China climate change over the 20th century using UK UEA/CRU high resolution grid data. Chinese J. Atmos. Sci., 30, 894–904, doi: 10.3878/j.issn.1006-9895.2006.05.18. (in Chinese)Google Scholar
  32. Yang, Y., Q. D. Yang, X. Y. Sun, et al.,2016: A comparative research of the simulation capability of Noah, Shaw, and CLM models in semi-arid areas of northwestern China. Climatic Environ. Res., 21, 405–417, doi: 10.3878/j.issn.1006-9585. 2016.15105. (in Chinese)Google Scholar
  33. Yang, Z. Y., L. Liu, Y. Q. Cao, et al.,2011: Advances in risk assessment and forecast warning of agricultural drought disasters. J. Econ. Water Resour., 29, 12–17, doi: 10.3969/j.issn.1003-9511.2011.02.003. (in Chinese)Google Scholar
  34. Yu, Y., and Z. H. Xie, 2013: A simulation study on climatic effects of land cover change in China. Adv. Climate Change Res., 4, 117–126, doi: 10.3724/sp.j.1248.2013.117.CrossRefGoogle Scholar
  35. Yuan, Y., H. Gao, W. J. Li, et al.,2017: The 2016 summer floods in China and associated physical mechanisms: A comparison with 1998. J. Meteor. Res., 31, 261–277, doi: 10.1007/s13351-017-6192-5.CrossRefGoogle Scholar
  36. Zeng, X. B., M. Zhao, and R. E. Dickinson, 1998: Intercomparison of bulk aerodynamic algorithms for the computation of sea surface fluxes using TOGA COARE and TAO data. J. Climate, 11, 2628–2644, doi: 10.1175/1520-0442(1998)011<2628: IOBAAF>2.0.CO;2.CrossRefGoogle Scholar
  37. Zhang, H. Q., Y. H. Li, and X. J. Gao, 2009: Potential impacts of land-use on climate variability and extremes. Adv. Atmos. Sci., 26, 840–854, doi: 10.1007/s00376-009-8047-1.CrossRefGoogle Scholar
  38. Zhang, Q., L. H. Chen, R. Y. Wang, et al.,2012: Climate change and food, food safety in Northwest China. J. Arid Meteor., 30, 509–513. (in Chinese)Google Scholar
  39. Zhang, Q., L. Y. Han, L. Y. Zhang, et al.,2014: Analysis on the character and management strategy of drought disaster and risk under the climatic warming. Adv. Earth Sci., 29, 80–91. (in Chinese)Google Scholar
  40. Zhang, Y., L. Zhang, and S. P. Wang, 2017: Drought events and its influence in summer of 2017 in China. J. Arid Meteor., 35, 899–905. (in Chinese)Google Scholar

Copyright information

© The Chinese Meteorological Society and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Yulong Ren
    • 1
  • Yaohui Li
    • 1
    Email author
  • Zhaoxia Pu
    • 2
  • Tiejun Zhang
    • 1
  • Haixia Duan
    • 1
  • Wei Wang
    • 1
  1. 1.Institute of Arid Meteorology of China Meteorological Administration (CMA)Key Laboratory of Arid Climatic Change and Disaster Reduction of Gansu Province and CMALanzhouChina
  2. 2.Department of Atmospheric SciencesUniversity of UtahUtahUSA

Personalised recommendations