Journal of Meteorological Research

, Volume 32, Issue 5, pp 723–733 | Cite as

Influences of the Internal Mixing of Anthropogenic Aerosols on Global Aridity Change

  • Hua Zhang
  • Chen Zhou
  • Shuyun Zhao
Special Collection on Aerosol-Cloud-Radiation Interactions


Influences of the mixing treatments of anthropogenic aerosols on their effective radiative forcing (ERF) and global aridity are evaluated by using the BCC_AGCM2.0_CUACE/Aero, an aerosol–climate online coupled model. Simulations show that the negative ERF due to external mixing (EM, a scheme in which all aerosol particles are treated as independent spheres formed by single substance) aerosols is largely reduced by the partial internal mixing (PIM, a scheme in which some of the aerosol particles are formed by one absorptive and one scattering substance) method. Compared to EM, PIM aerosols have much stronger absorptive ability and generally weaker hygroscopicity, which would lead to changes in radiative forcing, hence to climate. For the global mean values, the ERFs due to anthropogenic aerosols since the pre-industrial are–1.02 and–1.68 W m–2 for PIM and EM schemes, respectively. The variables related to aridity such as global mean temperature, net radiation flux at the surface, and the potential evaporation capacity are all decreased by 2.18/1.61 K, 5.06/3.90 W m–2, and 0.21/0.14 mm day–1 since 1850 for EM and PIM schemes, respectively. According to the changes in aridity index, the anthropogenic aerosols have caused general humidification over central Asia, South America, Africa, and Australia, but great aridification over eastern China and the Tibetan Plateau since the pre-industrial in both mixing schemes. However, the aridification is considerably alleviated in China, but intensified in the Arabian Peninsula and East Africa in the PIM scheme.

Key words

global aridity internal mixing anthropogenic aerosols effective radiative forcing 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abel, S. J., J. M. Haywood, E. J. Highwood, et al.,2003: Evolution of biomass burning aerosol properties from an agricultural fire in southern Africa. Geophys. Res. Lett., 30, 1783, doi: 10.1029/2003GL017342.CrossRefGoogle Scholar
  2. Andreae, M. O., R. J. Charlson, F. Bruynseels, et al.,1986: Internal mixture of sea salt, silicates, and excess sulfate in marine aerosols. Science, 232, 1620–1623, doi: 10.1126/science. 232.4758.1620.CrossRefGoogle Scholar
  3. Bauer, S. E., S. Menon, D. Koch, et al.,2010: A global modeling study on carbonaceous aerosol microphysical characteristics and radiative effects. Atmos. Chem. Phys., 10, 7439–7456, doi: 10.5194/acp-10-7439-2010.CrossRefGoogle Scholar
  4. Bohren, C. F., and D. R. Huffman, 1998: Absorption and Scattering of Light by Small Particles. Wiley-VCH, New York, 530 pp.CrossRefGoogle Scholar
  5. Bond, T. C., D. G. Streets, K. F. Yarber, et al.,2004: A technology-based global inventory of black and organic carbon emissions from combustion. J. Geophys. Res. Atmos., 109, D14203, doi: 10.1029/2003JD003697.CrossRefGoogle Scholar
  6. Bond, T. C., E. Bhardwaj, R. Dong, et al.,2007: Historical emissions of black and organic carbon aerosol from energy-related combustion, 1850–2000. Global Biogeochem. Cycles, 21, GB2018, doi: 10.1029/2006GB002840.CrossRefGoogle Scholar
  7. Boucher, O., D. Randall, P. Artaxo, et al.,2013: Clouds and aerosols. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, T. F. Stocker et al., Eds., Cambridge University Press, Cambridge and New York, 87 pp.Google Scholar
  8. Chung, S. H., and J. H. Seinfeld, 2002: Global distribution and climate forcing of carbonaceous aerosols. J. Geophys. Res. Atmos., 107, 4407, doi: 10.1029/2001JD001397.CrossRefGoogle Scholar
  9. Dai, A. G., 2011: Characteristics and trends in various forms of the Palmer Drought Severity Index during 1900–2008. J. Geophys. Res. Atmos., 116, D12115, doi: 10.1029/2010JD 015541.CrossRefGoogle Scholar
  10. Deboudt, K., P. Flament, M. Choël, et al.,2010: Mixing state of aerosols and direct observation of carbonaceous and marine coatings on African dust by individual particle analysis. J. Geophys. Res. Atmos., 115, D24207, doi: 10.1029/2010JD 013921.CrossRefGoogle Scholar
  11. Feng, S., and Q. Fu, 2013: Expansion of global drylands under a warming climate. Atmos. Chem. Phys. Discuss., 13, 14,637–14,665, doi: 10.5194/acpd-13-14637-2013.Google Scholar
  12. Guan, X. D., J. P. Huang, Y. T. Zhang, et al.,2016: The relationship between anthropogenic dust and population over global semi-arid regions. Atmos. Chem. Phys., 16, 5159–5169, doi: 10.5194/acp-16-5159-2016.CrossRefGoogle Scholar
  13. Haywood, J., and O. Boucher, 2000: Estimates of the direct and indirect radiative forcing due to tropospheric aerosols: A review. Rev. Geophys., 38, 513–543, doi: 10.1029/1999RG 000078.CrossRefGoogle Scholar
  14. Huang, J. P., J. J. Liu, B. Chen, et al.,2015: Detection of anthropogenic dust using CALIPSO lidar measurements. Atmos. Chem. Phys., 15, 11653–11665, doi: 10.5194/acp-15-11653-2015.CrossRefGoogle Scholar
  15. IPCC, 2013: Climate Change 2013: The Physical Science Basis. Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Stocker, T. F., et al., Eds. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1535 pp, doi: 10.1017/CBO9781107415324.Google Scholar
  16. Jacobson, M. Z., 2000: A physically-based treatment of elemental carbon optics: Implications for global direct forcing of aerosols. Geophys. Res. Lett., 27, 217–220, doi: 10.1029/1999GL 010968.CrossRefGoogle Scholar
  17. Jacobson, M. Z., 2001: Strong radiative heating due to the mixing state of black carbon in atmospheric aerosols. Nature, 409, 695–697, doi: 10.1038/35055518.CrossRefGoogle Scholar
  18. Jing, X. W., and H. Zhang, 2012: Application and evaluation of McICA cloud–radiation framework in the AGCM of the National Climate Center. Chinese J. Atmos. Sci., 36, 945–958, doi: 10.3878/j.issn.1006-9895.2012.11155. (in Chinese)Google Scholar
  19. Kirkevåg, A., T. Iversen, Ø. Seland, et al.,2008: Aerosol–cloud–climate interactions in the climate model CAM-Oslo. Tellus A Dyn. Meteor. Oceanogr., 60, 492–512, doi: 10.1111/j.1600-0870.2008.00313.x.CrossRefGoogle Scholar
  20. Kottek, M., J. Grieser, C. Beck, et al.,2006: World map of the Koppen–Geiger climate classification updated. Meteor. Z., 15, 259–263, doi: 10.1127/0941-2948/2006/0130.CrossRefGoogle Scholar
  21. Lesins, G., P. Chylek, and U. Lohmann, 2002: A study of internal and external mixing scenarios and its effect on aerosol optical properties and direct radiative forcing. J. Geophys. Res. Atmos., 107, 4094, doi: 10.1029/2001JD000973.CrossRefGoogle Scholar
  22. Li, H., C. Liu, L. Bi, et al.,2010: Numerical accuracy of “equivalent” spherical approximations for computing ensemble-averaged scattering properties of fractal soot aggregates. J. Quant. Spectrosc. Radiat. Transf., 111, 2127–2132, doi: 10.1016/j. jqsrt.2010.05.009.CrossRefGoogle Scholar
  23. Martins, J. V., P. Artaxo, C. Liousse, et al.,1998: Effects of black carbon content, particle size, and mixing on light absorption by aerosols from biomass burning in Brazil. J. Geophys. Res. Atmos., 103, 32041–32050, doi: 10.1029/98JD02593.CrossRefGoogle Scholar
  24. McMeeking, G. R., N. Good, M. D. Petters, et al.,2011: Influences on the fraction of hydrophobic and hydrophilic black carbon in the atmosphere. Atmos. Chem. Phys., 11, 5099–5112, doi: 10.5194/acp-11-5099-2011.CrossRefGoogle Scholar
  25. Myhre, G., D. Shindell, F. M. Bréon, et al.,2013: Anthropogenic and natural radiative forcing. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, T. F. Stocker et al., Eds., Cambridge University Press, Cambridge, 82 pp.Google Scholar
  26. Nightingale, P. D., G. Malin, C. S. Law, et al.,2000: In situ evaluation of air–sea gas exchange parameterizations using novel conservative and volatile tracers. Glob. Biogeochem. Cycles, 14, 373–387, doi: 10.1029/1999GB900091.CrossRefGoogle Scholar
  27. Ohara, T., H. Akimoto, J. Kurokawa, et al.,2007: An Asian emission inventory of anthropogenic emission sources for the period 1980–2020. Atmos. Chem. Phys., 7, 4419–4444, doi: 10. 5194/acp-7-4419-2007.CrossRefGoogle Scholar
  28. Okada, K., 1983: Nature of individual hygroscopic particles in the urban atmosphere. J. Meteor. Soc. Japan, 61, 727–736, doi: 10.2151/jmsj1965.61.5_727.CrossRefGoogle Scholar
  29. Olivier, J. G. J., J. J. M. Berdowski, J. A. H. W. Peters, et al.,2001: Applications of EDGAR. Including a Description of EDGAR 3.0: Reference Database with Trend Data for 1970–1995. RIVM Report 773301001/NRP Report 410200051, Bilthoven, the Netherlands, RIVM.Google Scholar
  30. Petters, M. D., and S. M. Kreidenweis, 2007: A single parameter representation of hygroscopic growth and cloud condensation nucleus activity. Atmos. Chem. Phys., 7, 1961–1971, doi: 10.5194/acp-7-1961-2007.CrossRefGoogle Scholar
  31. Pósfai, M., R. Simonics, J. Li, et al.,2003: Individual aerosol particles from biomass burning in southern Africa: 1. Compositions and size distributions of carbonaceous particles. J. Geophys. Res. Atmos., 108, 8483, doi: 10.1029/2002JD 002291.Google Scholar
  32. Rothma, L. S., D. Jacquemart, A. Barbe, et al.,2005: The HITRAN 2004 molecular spectroscopic database. J. Quant. Spectrosc. Radiat. Transf., 96, 139–204, doi: 10.1016/j.jqsrt.2004. 10.008.CrossRefGoogle Scholar
  33. Sato, M., J. Hansen, D. Koch, et al.,2003: Global atmospheric black carbon inferred from AERONET. Proc. Natl. Acad. Sci. USA, 100, 6319–6324, doi: 10.1073/pnas.0731897100.CrossRefGoogle Scholar
  34. van der Werf, G. R., J. T. Randerson, G. J. Collatz, et al.,2004: Continental-scale partitioning of fire emissions during the 1997 to 2001 El Niño/La Niña period. Science, 303, 73–76, doi: 10.1126/science.1090753.CrossRefGoogle Scholar
  35. Wang, Z. L., H. Zhang, and P. Lu., 2014: Improvement of cloud microphysics in the aerosol–climate model BCC_AGCM2.0.1_CUACE/Aero, evaluation against observations, and updated aerosol indirect effect. J. Geophys. Res. Atmos., 119, 8400–8417, doi: 10.1002/2014JD021886.CrossRefGoogle Scholar
  36. Wang, Z. L., H. Zhang, and X. Y. Zhang, 2016: Projected response of East Asian summer monsoon system to future reductions in emissions of anthropogenic aerosols and their precursors. Climate Dyn., 47, 1455–1468, doi: 10.1007/s00382-015-2912-7.CrossRefGoogle Scholar
  37. Wei, X. D., and H. Zhang, 2011: Analysis of optical properties of nonspherical dust aerosols. Acta Opt. Sinica, 31, 0501002, doi: 10.3788/aos201131.0501002. (in Chinese)CrossRefGoogle Scholar
  38. Wu, T. W., R. C. Yu, F. Zhang, et al.,2010: The Beijing Climate Center atmospheric general circulation model: Description and its performance for the present-day climate. Climate Dyn., 34, 123–147, doi: 10.1007/s00382-008-0487-2.CrossRefGoogle Scholar
  39. Zhang, H., Z. L. Wang, Z. Z. Wang, et al.,2012: Simulation of direct radiative forcing of aerosols and their effects on East Asian climate using an interactive AGCM–aerosol coupled system. Climate Dyn., 38, 1675–1693, doi: 10.1007/s00382-011-1131-0.CrossRefGoogle Scholar
  40. Zhang, H., X. Jing, and J. Li, 2014: Application and evaluation of a new radiation code under McICA scheme in BCC_AGCM2.0.1. Geosci. Model Dev., 7, 737–754, doi: 10.5194/gmd-7-737-2014.CrossRefGoogle Scholar
  41. Zhang, H., C. Zhou, Z. L. Wang, et al.,2015a: The influence of different black carbon and sulfate mixing methods on their optical and radiative properties. J. Quant. Spectrosc. Radiat. Transf., 161, 105–116, doi: 10.1016/j.jqsrt.2015.04.002.CrossRefGoogle Scholar
  42. Zhang, H., Q. Chen, and B. Xie, 2015b: A new parameterization for ice cloud optical properties used in BCC-RAD and its radiative impact. J. Quant. Spectrosc. Radiat. Transf., 150, 76–86, doi: 10.1016/j.jqsrt.2014.08.024.CrossRefGoogle Scholar
  43. Zhang, H., S. Y. Zhao, Z. L. Wang, et al.,2016: The updated effective radiative forcing of major anthropogenic aerosols and their effects on global climate at present and in the future. Int. J. Climatol., 36, 4029–4044, doi: 10.1002/joc.4613.CrossRefGoogle Scholar
  44. Zhao, S. Y., X. F. Zhi, H. Zhang, et al.,2014: Primary assessment of the simulated climatic state using a coupled aerosol–climate model BCC_AGCM2.0.1_CAM. Climatic Environ. Res., 19, 265–277, doi: 10.3878/j.issn.1006-9585.2012. 12015. (in Chinese)Google Scholar
  45. Zhao, S. Y., H. Zhang, S. Feng, et al.,2015: Simulating direct effects of dust aerosol on arid and semi-arid regions using an aerosol–climate coupled system. Int. J. Climatol., 35, 1858–1866, doi: 10.1002/joc.4093.CrossRefGoogle Scholar
  46. Zhao, S. Y., H. Zhang, Z. L. Wang, et al.,2017: Simulating the effects of anthropogenic aerosols on terrestrial aridity using an aerosol–climate coupled model. J. Climate, 30, 7451–7463, doi: 10.1175/JCLI-D-16-0407.1.CrossRefGoogle Scholar
  47. Zhou, C., H. Zhang, and Z. L. Wang, 2013: Impact of different mixing ways of black carbon and non-absorbing aerosols on the optical properties. Acta Opt. Sinica, 33, 0829001, doi: 10.3788/AOS201333.0829001. (in Chinese)CrossRefGoogle Scholar
  48. Zhou, C., H. Zhang, S. Y. Zhao, et al.,2018: On effective radiative forcing of partial internally and externally mixed aerosols and their effects on global climate. J. Geophys. Res. Atmos., 123, 401–423, doi: 10.1002/2017JD027603.CrossRefGoogle Scholar

Copyright information

© The Chinese Meteorological Society and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.State Key Laboratory of Severe WeatherChinese Academy of Meteorological SciencesBeijingChina
  2. 2.Collaborative Innovation Center on Forecast and Evaluation of Meteorological DisastersNanjing University of Information Science & TechnologyNanjingChina
  3. 3.Laboratory for Climate Studies, National Climate CenterChina Meteorological AdministrationBeijingChina

Personalised recommendations