Journal of Meteorological Research

, Volume 32, Issue 4, pp 571–583 | Cite as

Raindrop Size Distribution Parameters Retrieved from Guangzhou S-band Polarimetric Radar Observations

  • Xiantong Liu
  • Qilin Wan
  • Hong Wang
  • Hui Xiao
  • Yu Zhang
  • Tengfei Zheng
  • Lu Feng


According to the statistical shape–slope (μ–Λ) relationship observed for the first time by several 2D-Video-Distrometers (2DVD) in southern China, a constrained gamma (C-G) model was proposed for the retrieval of rain drop size distributions (DSDs) from Guangzhou S-band polarimetric radar observations. Two typical precipitation processes were selected to verify the accuracy of the retrieval scheme. The μ–Λ relationship: Λ = 0.0241μ2 + 0.867μ + 2.453 was obtained based on the 2DVD observation results from at Huizhou Longmen station, which is a very representative location in the area. Relying on the Guangzhou polarimetric radar measurements of radar reflectivity (ZHH) and differential reflectivity (ZDR), the gamma (Γ) size distribution parameters (N0, μ, and Λ) can be retrieved by the C-G model retrieval scheme. The results show that the Guangzhou polarimetric radar retrievals of DSDs were close to the 2DVD observations at Guangzhou Maofengshan station. The rain rate, mass mean diameter, and normalized intercept parameter of radar retrievals were in good agreement with the 2DVD observations, and the relative errors were less than 10%. The overall accuracy of the retrieval scheme was high. The retrieval scheme has established the relationship between the polarimetric radar measurements and gamma size distribution parameters. It will be helpful to in-depth research and application of the dual-polarization radar data in microphysical precipitation processes analysis, as well as convection-resolved numerical model data assimilation and prediction effect evaluation.

Key words

Guangzhou S-band polarimetric radar 2D-Video-Disdrometer raindrop size distribution retrieval microphysics 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bao, X. W., D. Wu, X. T. Lei, et al., 2017: Improving the extreme rainfall forecast of Typhoon Morakot (2009) by assimilating radar data from Taiwan Island and mainland China. J. Meteor. Res., 31, 747–766, doi: 10.1007/s13351-017-6007-8.CrossRefGoogle Scholar
  2. Beard, K. V., V. N. Bringi, and M. Thurai, 2010: A new understanding of raindrop shape. Atmos. Res., 97, 396–415, doi: 10.1016/j.atmosres.2010.02.001.CrossRefGoogle Scholar
  3. Berne, A., and W. F. Krajewski, 2013: Radar for hydrology: Unfulfilled promise or unrecognized potential? Adv. Water Res., 51, 357–366, doi: 10.1016/j.advwatres.2012.05.005.Google Scholar
  4. Brandes, E. A., G. F. Zhang, and J. Vivekanandan, 2003: An evaluation of a drop distribution-based polarimetric radar rainfall estimator. J. Appl. Meteor., 42, 652–660, doi: 10.1175/1520-0450(2003)042<0652:AEOADD>2.0.CO;2.CrossRefGoogle Scholar
  5. Brandes, E. A., G. F. Zhang, and J. Vivekanandan, 2004a: Drop size distribution retrieval with polarimetric radar: Model and application. J. Appl. Meteor., 43, 461–475, doi: 10.1175/1520-0450(2004)043<0461:DSDRWP>2.0.CO;2.CrossRefGoogle Scholar
  6. Brandes, E. A., G. F. Zhang, and J. Vivekanandan, 2004b: Comparison of polarimetric radar drop size distribution retrieval algorithms. J. Atmos. Oceanic Technol., 21, 584–598, doi: 10.1175/1520-0426(2004)021<0584:COPRDS>2.0.CO;2.CrossRefGoogle Scholar
  7. Bringi, V. N., G. J. Huang, V. Chandrasekar, et al., 2002: A methodology for estimating the parameters of a gamma raindrop size distribution model from polarimetric radar data: Application to a squall-line event from the TRMM/Brazil campaign. J. Atmos. Oceanic Technol., 19, 633–645, doi: 10.1175/1520-0426(2002)019<0633:AMFETP>2.0.CO;2.CrossRefGoogle Scholar
  8. Bringi, V. N., V. Chandrasekar, J. Hubbert, et al., 2003: Raindrop size distribution in different climatic regimes from disdrometer and dual-polarized radar analysis. J Atmos. Sci., 60, 354–365, doi: 10.1175/1520-0469(2003)060<0354:RSDIDC>2.0.CO;2.CrossRefGoogle Scholar
  9. Brown, B. R., M. M. Bell, and A. J. Frambach, 2016: Validation of simulated hurricane drop size distributions using polarimetric radar. Geophys. Res. Lett., 43, 910–917, doi: 10.1002/2015GL067278.CrossRefGoogle Scholar
  10. Bruintjes, R. T., 1999: A review of cloud seeding experiments to enhance precipitation and some new prospects. Bull. Amer. Meteor. Soc., 80, 805–820, doi: 10.1175/1520-0477(1999) 080<0805:AROCSE>2.0.CO;2.CrossRefGoogle Scholar
  11. Cao, Q., and G. F, Zhang, 2009: Errors in estimating raindrop size distribution parameters employing disdrometer and simulated raindrop spectra. J. Appl. Meteor. Climatol., 48, 406–425, doi: 10.1175/2008JAMC2026.1.CrossRefGoogle Scholar
  12. Cao, Q., G. F. Zhang, E. Brandes, et al., 2008: Analysis of video disdrometer and polarimetric radar data to characterize rain microphysics in Oklahoma. J. Appl. Meteor. Climatol., 47, 2238–2255, doi: 10.1175/2008JAMC1732.1.CrossRefGoogle Scholar
  13. Cao, Q., G. F. Zhang, E. A. Brandes, et al., 2010: Polarimetric radar rain estimation through retrieval of drop size distribution using a Bayesian approach. J. Appl. Meteor. Climatol., 49, 973–990, doi: 10.1175/2009JAMC2227.1.CrossRefGoogle Scholar
  14. Chang, W. Y., T. C. Chen Wang, and P. L. Lin, 2009: Characteristics of the raindrop size distribution and drop shape relation in typhoon systems in the western Pacific from the 2D Video Disdrometer and NCU C-band polarimetric radar. J. Atmos. Oceanic Technol., 26, 1973–1993, doi: 10.1175/2009JTECHA1236.1.CrossRefGoogle Scholar
  15. Chen, B. J., J. Yang, and J. P. Pu, 2013: Statistical characteristics of raindrop size distribution in the Meiyu season observed in eastern China. J. Meteor. Soc. Japan, 91, 215–227, doi: 10.2151/jmsj.2013-208.CrossRefGoogle Scholar
  16. Gao, W. H., C. H. Sui, T. C. Chen Wang, et al., 2011: An evaluation and improvement of microphysical parameterization from a two-moment cloud microphysics scheme and the Southwest Monsoon Experiment (SoWMEX)/Terrain-influenced Monsoon Rainfall Experiment (TiMREX) observations. J. Geophys. Res. Atmos., 116, D19101, doi: 10.1029/2011JD015718.CrossRefGoogle Scholar
  17. Gorgucci, E., V. Chandrasekar, V. N. Bringi, et al., 2002: Estimation of raindrop size distribution parameters from polarimetric radar measurements. J. Atmos. Sci., 59, 2373–2384, doi: 10.1175/1520-0469(2002)059<2373:EORSDP>2.0.CO;2.CrossRefGoogle Scholar
  18. Hu, Z. Q., L. P. Liu, and L. L. Wu, 2014: Comparison among several system biases calibration methods on C-band polarimetric radar. Plateau Meteor., 33, 221–231, doi: 10.7522/j.issn. 1000–0534.2013.00134. (in Chinese)Google Scholar
  19. Jin, Q., Y. Yuan, H. J. Liu, et al., 2015: Analysis of microphysical characteristics of the raindrop spectrum over the area between the Yangtze River and the Huaihe River during summer. Acta Meteor. Sinica, 73, 778–288, doi: 10.11676/qxxb2015.036. (in Chinese)Google Scholar
  20. Jung, Y., G. F. Zhang, and M. Xue, 2008: Assimilation of simulated polarimetric radar data for a convective storm using the ensemble Kalman filter. Part I: Observation operators for reflectivity and polarimetric variables. Mon. Wea. Rev., 136, 2228–2245, doi: 10.1175/2007MWR2083.1.Google Scholar
  21. Jung, Y., M. Xue, and G. F. Zhang, 2010: Simulations of polarimetric radar signatures of a supercell storm using a two-moment bulk microphysics scheme. J. Appl. Meteor. Climatol., 49, 146–163, doi: 10.1175/2009JAMC2178.1.CrossRefGoogle Scholar
  22. Kruger, A., and W. F. Krajewski, 2002: Two-dimensional video disdrometer: A description. J. Atmos. Oceanic Technol., 19, 602–617, doi: 10.1175/1520-0426(2002)019<0602:TDVDAD> 2.0.CO;2.CrossRefGoogle Scholar
  23. Kumjian, M. R., and A. V. Ryzhkov, 2010: The impact of evaporation on polarimetric characteristics of rain: Theoretical model and practical implications. J. Appl. Meteor. Climatol., 49, 1247–1267, doi: 10.1175/2010JAMC2243.1.CrossRefGoogle Scholar
  24. Liu, L. P., R. S. Ge, and P. Y. Zhang, 2002: A study of method and accuracy of rainfall rate and liquid water content measurements by dual linear polarization Doppler radar. Chinese J. Atmos. Sci., 26, 709–720, doi: 10.3878/j.issn.1006-9895. 2002.05.12. (in Chinese)Google Scholar
  25. Liu, X. C., T. C. Gao, L. Liu, et al., 2013: Advances in microphysical features and measurement techniques of raindrops. Adv. Earth Sci., 28, 1217–1226. (in Chinese)Google Scholar
  26. Luo, Y. L., R. H. Zhang, Q. L. Wan, et al., 2017: The Southern China monsoon rainfall experiment (SCMREX). Bull. Amer. Meteor. Soc., 98, 999–1013, doi: 10.1175/bams-d-15-00235.1.CrossRefGoogle Scholar
  27. Ma, H., Q. L. Wan, Z. T. Chen, et al., 2008: Improving rainfall estimation by radar based on Z–I relation and variation-calibration method. J. Trop. Meteor., 24, 546–549, doi: 10.3969/j.issn. 1004–4965.2008.05.016. (in Chinese)Google Scholar
  28. Marshall, J. S., and W. M. Palmer, 1948: The distribution of raindrops with size. J. Atmos. Sci., 5, 165–166, doi: 10.1175/1520-0469(1948)005<0165:TDORWS>2.0.CO;2.Google Scholar
  29. Marzuki, W. L. Randeu, T. Kozu, et al., 2013: Raindrop axis ratios, fall velocities and size distribution over Sumatra from 2D-Video Disdrometer measurement. Atmos. Res., 119, 23–37, doi: 10.1016/j.atmosres.2011.08.006.CrossRefGoogle Scholar
  30. Michaelides, S., 2008: Precipitation: Advances in Measurement, Estimation and Prediction. Springer Press, Berlin Heidelberg, 540 ppGoogle Scholar
  31. Schönhuber, M., G. Lammer, and W. L. Randeu, 2007: One decade of imaging precipitation measurement by 2D-video-distrometer. Adv. Geosci., 10, 85–90, doi: 10.5194/adgeo-10-85-2007.CrossRefGoogle Scholar
  32. Seliga, T. A., and V. N. Bringi, 1976: Potential use of radar differential reflectivity measurements at orthogonal polarizations for measuring precipitation. J. Appl. Meteor., 15, 69–76, doi: 10.1175/1520-0450(1976)015<0069:PUORDR>2.0.CO;2.CrossRefGoogle Scholar
  33. Tang, Q., H. Xiao, C. W. Guo, et al., 2014: Characteristics of the raindrop size distributions and their retrieved polarimetric radar parameters in northern and southern China. Atmos. Res., 135–136, 59–75, doi: 10.1016/j.atmosres.2013.08.003.CrossRefGoogle Scholar
  34. Tokay, A., W. A. Petersen, P. Gatlin, et al., 2013: Comparison of raindrop size distribution measurements by collocated disdrometers. J. Atmos. Oceanic Technol., 30, 1672–1690, doi: 10.1175/JTECH-D-12-00163.1.CrossRefGoogle Scholar
  35. Ulbrich, C. W., 1983: Natural variations in the analytical form of the raindrop size distribution. J. Appl. Meteor., 22, 1764–1775, doi: 10.1175/1520-0450(1983)022<1764:NVITAF>2.0. CO;2.CrossRefGoogle Scholar
  36. Vivekanandan, J., G. F. Zhang, and E. Brandes, 2004: Polarimetric radar estimators based on a constrained Gamma drop size distribution model. J. Appl. Meteor., 43, 217–230, doi: 10.1175/1520-0450(2004)043<0217:PREBOA>2.0.CO;2.CrossRefGoogle Scholar
  37. Wang, H., Q. L. Wan, J. F. Yin, et al., 2016: Application of the dual-polarization radar data in numerical modeling studies: Construction of the simulator. Acta Meteor. Sinica, 74, 229–243, doi: 10.11676/qxxb2016.017. (in Chinese)Google Scholar
  38. Wang, M. J., K. Zhao, M. Xue, et al., 2016: Precipitation microphysics characteristics of a Typhoon Matmo (2014) rainband after landfall over eastern China based on polarimetric radar observations. J. Geophys. Res. Atmos., 121, 12415–12433, doi: 10.1002/2016JD025307.CrossRefGoogle Scholar
  39. Wen, L., K. Zhao, G. F. Zhang, et al., 2016: Statistical characteristics of raindrop size distributions observed in East China during the Asian summer monsoon season using 2-D video disdrometer and Micro Rain Radar data. J. Geophys. Res. Atmos., 121, 2265–2282, doi: 10.1002/2015JD024160.CrossRefGoogle Scholar
  40. Williams, C. R., V. N. Bringi, L. D. Carey, et al., 2014: Describing the shape of raindrop size distributions using uncorrelated raindrop mass spectrum parameters. J. Appl. Meteor. Climatol., 53, 1282–1296, doi: 10.1175/JAMC-D-13-076.1.CrossRefGoogle Scholar
  41. Zhang, G. F., 2016: Weather Radar Polarimetry. CPC Press, Boca Raton, 18 ppGoogle Scholar
  42. Zhang, G. F., J. Vivekanandan, and E. A. Brandes, 2001: A method for estimating rain rate and drop size distribution from polarimetric radar measurements. IEEE Trans. Geosci. Remote Sens., 39, 830–841, doi: 10.1109/36.917906.CrossRefGoogle Scholar
  43. Zhang, G. F., J. Vivekanandan, E. A. Brandes, et al., 2003: The shape-slope relation in observed Gamma raindrop size distributions: Statistical error or useful information? J. Atmos. Oceanic Technol., 20, 1106–1119, doi: 10.1175/1520-0426 (2003)020<1106:TSRIOG>2.0.CO;2.CrossRefGoogle Scholar
  44. Zhang, G. F., J. Z. Sun, and E. A. Brandes, 2006: Improving parameterization of rain microphysics with disdrometer and radar observations. J. Atmos. Sci., 63, 1273–1290, doi: 10.1175/JAS 3680.1.CrossRefGoogle Scholar
  45. Zhang, X. Z., J. M. Chen, and P. Zhao, 2015: Impacts of Doppler radar data assimilation on the simulation of severe heavy rainfall events. J. Appl. Meteor. Sci., 26, 555–566, doi: 10.11898/1001-7313.20150505. (in Chinese)Google Scholar
  46. Zhu, Y. Q., and Y. B. Liu, 2013: Advances in measurement techniques and statistics features of surface raindrop size distribution. Adv. Earth Sci., 28, 685–694, doi: 10.11867/j.issn.1001-8166.2013.06.0685. (in Chinese)Google Scholar

Copyright information

© The Chinese Meteorological Society and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Xiantong Liu
    • 1
  • Qilin Wan
    • 1
  • Hong Wang
    • 1
  • Hui Xiao
    • 1
  • Yu Zhang
    • 2
  • Tengfei Zheng
    • 1
  • Lu Feng
    • 1
  1. 1.Institute of Tropical and Marine Meteorology of China Meteorological AdministrationGuangzhouChina
  2. 2.Guangzhou Meteorological ObservatoryGuangzhouChina

Personalised recommendations