Journal of Meteorological Research

, Volume 32, Issue 1, pp 146–156 | Cite as

Average Amount and Stability of Available Agro-Climate Resources in the Main Maize Cropping Regions in China during 1981–2010

  • Jin Zhao
  • Xiaoguang Yang
Regular Articles


The available agro-climate resources that can be absorbed and converted into dry matter could directly affect crop growth and yield under climate change. Knowledge of the average amount and stability of available agro-climate resources for maize in the main cropping regions of China under climate change is essential for farmers and advisors to optimize cropping choices and develop adaptation strategies under limited resources. In this study, the three main maize cropping regions in China—the North China spring maize region (NCS), the Huanghuaihai summer maize region (HS), and the Southwest China mountain maize region (SCM)—were selected as study regions. Based on observed solar radiation, temperature, and precipitation data, we analyzed the spatial distributions and temporal trends in the available agro-climate resources for maize during 1981–2010. During this period, significantly prolonged climatological growing seasons for maize [3.3, 2.0, and 4.7 day (10 yr)–1 in NCS, HS, and SCM] were found in all three regions. However, the spatiotemporal patterns of the available agro-climate resources differed among the three regions. The available heating resources for maize increased significantly in the three regions, and the rates of increase were higher in NCS [95.5°C day (10 yr)–1] and SCM [93.5°C day (10 yr)–1] than that in HS [57.7°C day (10 yr)–1]. Meanwhile, decreasing trends in the available water resources were found in NCS [–5.3 mm (10 yr)–1] and SCM [–5.8 mm (10 yr)–1], whereas an increasing trend was observed in HS [3.0 mm (10 yr)–1]. Increasing trends in the available radiation resources were found in NCS [20.9 MJ m–2 (10 yr)–1] and SCM [25.2 MJ m–2 (10 yr)–1], whereas a decreasing trend was found in HS [11.6 MJ m–2 (10 yr)–1]. Compared with 1981–90, the stability of all three resource types decreased during 1991–2000 and 2001–10 in the three regions. More consideration should be placed on the extreme events caused by more intense climate fluctuations. The results can provide guidance in the development of suitable adaptations to climate change in the main maize cropping regions in China.


maize available agro-climate resources stability variability 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allen, R. G., L. S. Pereira, D. Raes, et al., 1998: Crop Evapotranspiration: Guidelines for Computing Crop Water Requirements, FAO Irrigation and Drainage Paper 56. United Nations Food and Agriculture Organization, Rome, Italy, 15 p.Google Scholar
  2. Bellon, M. R., D. Hodson, and J. Hellin, 2011: Assessing the vulnerability of traditional maize seed systems in Mexico to cli-mate change. Proc. Nat. Aca. Sci. USA, 108, 13432–13437, doi: 10.1073/pnas.1103373108.CrossRefGoogle Scholar
  3. Challinor, A. J., J. Watson, D. B. Lobell, et al., 2014: A meta-analysis of crop yield under climate change and adaptation. Nature Climate Change, 4, 287–291, doi: 10.1038/nclimate2153.CrossRefGoogle Scholar
  4. Chen, C., E. L. Wang, and Q. Yu, 2010a: Modeling wheat and maize productivity as affected by climate variation and irrigation supply in North China Plain. Agron. J., 102, 1037–1049, doi: 10.2134/agronj2009.0505.CrossRefGoogle Scholar
  5. Chen, C., E. L. Wang, and Q. Yu, 2010b: Modelling the effects of climate variability and water management on crop water productivity and water balance in the North China Plain. Agricultural Water Management, 97, 1175–1184, doi: 10.1016/j.agwat.2008.11.012.CrossRefGoogle Scholar
  6. Chen, C. Q., C. R. Qian, A. X. Deng, et al., 2012: Progressive and active adaptations of cropping system to climate change in Northeast China. Europ. J. Agron., 38, 94–103, doi: 10.1016/j.eja.2011.07.003.CrossRefGoogle Scholar
  7. Cui, Z. L., S. C. Yue, G. L. Wang, et al., 2013: Closing the yield gap could reduce projected greenhouse gas emissions: A case study of maize production in China. Global Change Biology, 19, 2467–2477, doi: 10.1111/gcb.12213.CrossRefGoogle Scholar
  8. Dai, S. W., X. G. Yang, M. Zhao, et al., 2011: Changes of China agricultural climate resources under the background of climate change. ?: Spatiotemporal change characteristics of agricultural climate resources in Southwest China. Chinese J. Appl. Ecology, 22, 442–452. (in Chinese)Google Scholar
  9. Dobermann, A., J. L. Ping, V. I. Adamchuk, et al., 2003: Classification of crop yield variability in irrigated production fields. Agron. J., 95, 1105–1120, doi: 10.2134/agronj2003.1105.CrossRefGoogle Scholar
  10. Döll, P., and S. Siebert, 2002: Global modeling of irrigation water requirements. Water Resour. Res., 38, 8–1.CrossRefGoogle Scholar
  11. Dong, C. Y., Z. J. Liu, and X. G. Yang, 2015: Effects of different grade drought on grain yield of spring maize in northern China. Trans. Chinese Soc. Agric. Eng., 31, 157–164. (in Chinese)Google Scholar
  12. FAO, 2014: FAOSTAT. [Available online at].Google Scholar
  13. Gabaldón-Leal, C., H. Webber, M. E. Otegui, et al., 2016: Modelling the impact of heat stress on maize yield formation. Field Crops Research, 198, 226–237, doi: 10.1016/j.fcr.2016.08.013.CrossRefGoogle Scholar
  14. Gong, S. X., 1988: Crop and Meteorology. Beijing Agricultural University Press, Beijing, 251–252. (in Chinese)Google Scholar
  15. Guan, K. Y., B. Sultan, M. Biasutti, et al., 2017: Assessing climate adaptation options and uncertainties for cereal systems in West Africa. Agric. For. Meteor., 232, 291–205, doi: 10.1016/j.agrformet.2016.07.021.CrossRefGoogle Scholar
  16. Hao, B., Q. Xue, T. H. Marek, et al., 2016: Radiation-use efficiency, biomass production, and grain yield in two maize hybrids differing in drought tolerance. J. Agro. Crop Sci., 202, 269–280, doi: 10.1111/jac.2016.202.issue-4.CrossRefGoogle Scholar
  17. IPCC, 2014: Climate Change 2014: Impacts, Adaptation, and Vulnerability. Cambridge University Press, Cambridge, 207 pp.Google Scholar
  18. Isik, M., and S. Devadoss, 2006: An analysis of the impact of climate change on crop yields and yield variability. Applied Economics, 38, 835–844, doi: 10.1080/00036840500193682.CrossRefGoogle Scholar
  19. Katz, R. W., and B. G. Brown, 1992: Extreme events in a changing climate: Variability is more important than averages. Climatic Change, 21, 289–302, doi: 10.1007/BF00139728.CrossRefGoogle Scholar
  20. Lesk, C., P. Rowhani, and N. Ramankutty, 2016: Influence of extreme weather disasters on global crop production. Nature, 529, 84–87, doi: 10.1038/nature16467.CrossRefGoogle Scholar
  21. Li, K. N., X. G. Yang, Z. J. Liu, et al., 2014: Low yield gap of winter wheat in the North China Plain. Europ. J. Agron., 59, 1–12, doi: 10.1016/j.eja.2014.04.007.CrossRefGoogle Scholar
  22. Li, K. N., X. G. Yang, H. Q. Tian, et al., 2016: Effects of changing climate and cultivar on the phenology and yield of winter wheat in the North China Plain. Int. J. Biometeor., 60, 21–32, doi: 10.1007/s00484-015-1002-1.CrossRefGoogle Scholar
  23. Li, S. K., and C. T. Wang, 2010: Potential and Ways to High Yield in Maize. Science Press, Beijing, 3–4. (in Chinese)Google Scholar
  24. Li, Z. G., H. J. Tang, P. Yang, et al., 2012: Spatio-temporal responses of cropland phenophases to climate change in Northeast China. J. Geogra. Sci., 22, 29–45, doi: 10.1007/s11442-012-0909-2.CrossRefGoogle Scholar
  25. Li, Z. G., P. Yang, H. J. Tang, et al., 2014: Response of maize phenology to climate warming in Northeast China between 1990 and 2012. Regional Environmental Change, 14, 39–48, doi: 10.1007/s10113-013-0503-x.CrossRefGoogle Scholar
  26. Liu, B. H., X. P. Chen, Q. F. Meng, et al., 2017: Estimating maize yield potential and yield gap with agro-climatic zones in China—Distinguish irrigated and rainfed conditions. Agric. For. Meteor., 239, 108–117, doi: 10.1016/j.agrformet.2017.02.035.CrossRefGoogle Scholar
  27. Liu, S. X., X. G. Mo, Z. H. Lin, et al., 2010: Crop yield responses to climate change in the Huang–Huai–Hai Plain of China. Agricultural Water Management, 97, 1195–1209, doi: 10.1016/j.agwat.2010.03.001.CrossRefGoogle Scholar
  28. Liu, Z. J., X. G. Yang, K. G. Hubbard, et al., 2012: Maize potential yields and yield gaps in the changing climate of Northeast China. Global Change Biology, 18, 3441–3454, doi: 10.1111/gcb.2012.18.issue-11.CrossRefGoogle Scholar
  29. Liu, Z. J., K. G. Hubbard, X. M. Lin, et al., 2013a: Negative effects of climate warming on maize yield are reversed by the changing of sowing date and cultivar selection in Northeast China. Global Change Biology, 19, 3481–3492, doi: 10.1111/gcb.12324.Google Scholar
  30. Liu, Z. J., X. G. Yang, F. Chen, et al., 2013b: The effects of past climate change on the northern limits of maize planting in Northeast China. Climatic Change, 117, 981–902, doi: 10.1007/s10584-012-0594-2.CrossRefGoogle Scholar
  31. Liu, Z. Y., J. P. Zhang, H. X. Luo, et al., 2014: Temporal and spatial distribution of maize drought in Southwest of China based on agricultural reference index for drought. Trans. Chinese Soc. Agric. Eng., 30, 105–115. (in Chinese)Google Scholar
  32. Lizaso, J. I., W. D. Batchelor, M. E. Westgate, et al., 2003: Enhancing the ability of CERES-Maize to compute light capture. Agricultural Systems, 76, 293–311, doi: 10.1016/S0308-521X(02)00003-3.CrossRefGoogle Scholar
  33. Meehl, G. A., F. Zwiers, J. Evans, et al., 2000: Trends in extreme weather and climate events: Issues related to modeling extremes in projections of future climate change. Bull. Amer. Meteor. Soc., 81, 427–436, doi: 10.1175/1520-0477(2000)081<0427:TIEWAC>2.3.CO;2.CrossRefGoogle Scholar
  34. Meng, Q. F., P. Hou, L. Wu, et al., 2013: Understanding production potentials and yield gaps in intensive maize production in China. Field Crop Research, 143, 91–97, doi: 10.1016/j.fcr.2012.09.023.CrossRefGoogle Scholar
  35. Meng, Q. F., P. Hou, D. B. Lobell, et al., 2014: The benefits of recent warming for maize production in high latitude China. Climatic Change, 122, 341–349, doi: 10.1007/s10584-013-1009-8.CrossRefGoogle Scholar
  36. Meng, Q. F., X. P. Chen, D. B. Lobell, et al., 2016: Growing sensitivity of maize to water scarcity under climate change. Scientific Reports, 6, 19605, doi: 10.1038/srep19605.CrossRefGoogle Scholar
  37. Olesen, J. E., M. Trnka, K. C. Kersebaum, et al., 2011: Impacts and adaptation of European crop production systems to climate change. Europ. J. Agron., 34, 96–112, doi: 10.1016/j.eja.2010.11.003.CrossRefGoogle Scholar
  38. Piao, S. L., P. Ciais, Y. Huang, et al., 2010: The impacts of climate change on water resources and agriculture in China. Nature, 467, 43–51, doi: 10.1038/nature09364.CrossRefGoogle Scholar
  39. Qu, M. L., 1991: Agro-Climatic Internship Guide. Beijing Agricultural University Press, Beijing, 21–25. (in Chinese)Google Scholar
  40. Rippke, U., J. Ramirez-Villegas, A. Jarvis, et al., 2016: Timescales of transformational climate change adaptation in sub-Saharan African agriculture. Nature Climate Change, 6, 605–609, doi: 10.1038/nclimate2947.CrossRefGoogle Scholar
  41. Rosenzweig, C., A. Iglesias, X. B. Yang, et al., 2001: Climate change and extreme weather events; implications for food production, plant diseases, and pests. Global Change and Human Health, 2, 90–104, doi: 10.1023/A:1015086831467.CrossRefGoogle Scholar
  42. Sinclair, T. R., and R. C. Muchow, 1999: Radiation use efficiency. Adv. Agron., 65, 215–265, doi: 10.1016/S0065-2113(08)60914-1.CrossRefGoogle Scholar
  43. Supit, I., C. A. van Diepen, A. J. W. de Wit, et al., 2012: Assessing climate change effects on European crop yields using the Crop Growth Monitoring System and a weather generator. Agric. For. Meteor., 164, 96–111, doi: 10.1016/j.agrformet.2012.05.005.CrossRefGoogle Scholar
  44. Tao, F. L., and Z. Zhang, 2011: Impacts of climate change as a function of global mean temperature: Maize productivity and water use in China. Climatic Change, 105, 409–432, doi: 10.1007/s10584-010-9883-9.CrossRefGoogle Scholar
  45. Tao, F. L., S. Zhang, Z. Zhang, et al., 2014: Maize growing duration was prolonged across China in the past three decades under the combined effects of temperature, agronomic management, and cultivar shift. Global Change Biology, 20, 3686–3699, doi: 10.1111/gcb.12684.CrossRefGoogle Scholar
  46. Tao, F. L., S. Zhang, Z. Zhang, et al., 2015: Temporal and spatial changes of maize yield potentials and yield gaps in the past three decades in China. Agriculture, Ecosystems & Environment, 208, 12–20.CrossRefGoogle Scholar
  47. Tollenaar, M., and A. Aguilera, 1992: Radiation use efficiency of an old and a new maize hybrid. Agron. J., 84, 536–541, doi: 10.2134/agronj1992.00021962008400030033x.CrossRefGoogle Scholar
  48. Trnka, M., J. E. Olesen, K. C. Kersebaum, et al., 2011: Agroclimatic conditions in Europe under climate change. Global Change Biology, 17, 2298–2318, doi: 10.1111/j.1365-2486.2011.02396.x.CrossRefGoogle Scholar
  49. Udo, S. O., and T. O. Aro, 1999: Global PAR related to global solar radiation for central Nigeria. Agric. For. Meteor., 97, 21–31, doi: 10.1016/S0168-1923(99)00055-6.CrossRefGoogle Scholar
  50. Wang, J., E. L. Wang, X. G. Yang, et al., 2012: Increased yield potential of wheat-maize cropping system in the North China Plain by climate change adaptation. Climatic Change, 113, 825–840, doi: 10.1007/s10584-011-0385-1.CrossRefGoogle Scholar
  51. Wang, J., E. L. Wang, H. Yin, et al., 2014: Declining yield potential and shrinking yield gaps of maize in the North China Plain. Agric. For. Meteor., 195–196, 89–101, doi: 10.1016/j.agrformet.2014.05.004.CrossRefGoogle Scholar
  52. Wang, X. H., L. Q. Peng, X. P. Zhang, et al., 2014: Divergence of climate impacts on maize yield in Northeast China. Agriculture, Ecosystems & Environment, 196, 51–58.CrossRefGoogle Scholar
  53. Wilson, D. R., R. C. Muchow, and C. J. Murgatroy, 1995: Model analysis of temperature and solar radiation limitations to maize potential productivity in a cool climate. Field Crop Research, 43, 1–18, doi: 10.1016/0378-4290(95)00037-Q.CrossRefGoogle Scholar
  54. Wu, D. R., Q. Yu, E. L. Wang, et al., 2008: Impact of spatial-temporal variations of climatic variables on summer maize yield in North China Plain. Int. J. Plant Product., 2, 71–88.Google Scholar
  55. Yang, P., L. J. Zhang, Y. X. Zhao, et al., 2015: Risk assessment and zoning of drought for summer maize in the Huang–Huai–Hai Region. Chinese J. Eco-Agric., 23, 110–118. (in Chinese)Google Scholar
  56. Yang, X. G., Y. Li, S. W. Dai, et al., 2011: Changes of China agricultural climate resources under the background of climate change. ?: Spatiotemporal change characteristics of China agricultural climate resources. Chinese J. Appl. Ecology, 22, 3177–3188. (in Chinese)Google Scholar
  57. Ye, Q., X. G. Yang, S. W. Dai, et al., 2015: Effects of climate change on suitable rice cropping areas, cropping systems and crop water requirements in southern China. Agricultural Water Management, 159, 35–44, doi: 10.1016/j.agwat.2015.05.022.CrossRefGoogle Scholar
  58. Zhao, J., X. G. Yang, S. Lyu, et al., 2014: Variability of available climate resources and disaster risks for different maturity types of spring maize in Northeast China. Regional Environmental Change, 14, 17–26, doi: 10.1007/s10113-013-0476-9.CrossRefGoogle Scholar
  59. Zhao, J., X. G. Yang, S. W. Dai, et al., 2015a: Increased utilization of lengthening growing season and warming temperatures by adjusting sowing dates and cultivar selection for spring maize in Northeast China. Europ. J. Agron., 67, 12–19, doi: 10.1016/j.eja.2015.03.006.CrossRefGoogle Scholar
  60. Zhao, J., X. G. Yang, X. M. Lin, et al., 2015b: Radiation interception and use efficiency contributes to higher yields of newer maize hybrids in Northeast China. Agron. J., 107, 1473–1480, doi: 10.2134/agronj14.0510.CrossRefGoogle Scholar
  61. Zhao, J., X. G. Yang, Z. J. Liu, et al., 2016: Variations in the potential climatic suitability distribution patterns and grain yields for spring maize in Northeast China under climate change. Climatic Change, 137, 29–42, doi: 10.1007/s10584-016-1652-y.CrossRefGoogle Scholar

Copyright information

© The Chinese Meteorological Society and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.College of Resources and Environmental SciencesChina Agricultural UniversityBeijingChina

Personalised recommendations