Advertisement

Journal of Meteorological Research

, Volume 32, Issue 3, pp 351–366 | Cite as

Projected Changes in Extreme High Temperature and Heat Stress in China

  • Xingcai Liu
  • Qiuhong Tang
  • Xuejun Zhang
  • Siao Sun
Article
  • 18 Downloads

Abstract

High temperature accompanied with high humidity may result in unbearable and oppressive weather. In this study, future changes of extreme high temperature and heat stress in mainland China are examined based on daily maximum temperature (Tx) and daily maximum wet-bulb globe temperature (Tw). Tw has integrated the effects of both temperature and humidity. Future climate projections are derived from the bias-corrected climate data of five general circulation models under the Representative Concentration Pathways (RCPs) 2.6 and 8.5 scenarios. Changes of hot days and heat waves in July and August in the future (particularly for 2020–50 and 2070–99), relative to the baseline period (1981–2010), are estimated and analyzed. The results show that the future Tx and Tw of entire China will increase by 1.5–5°C on average around 2085 under different RCPs. Future increases in Tx and Tw exhibit high spatial heterogeneity, ranging from 1.2 to 6°C across different regions and RCPs. By around 2085, the mean duration of heat waves will increase by 5 days per annum under RCP8.5. According to Tx, heat waves will mostly occur in Northwest and Southeast China, whereas based on Tw estimates, heat waves will mostly occur over Southeast China and the mean heat wave duration will be much longer than those from Tx. The total extreme hot days (Tx or Tw > 35°C) will increase by 10–30 days. Southeast China will experience the severest heat stress in the near future as extreme high temperature and heat waves will occur more often in this region, which is particularly true when heat waves are assessed based on Tw. In comparison to those purely temperature-based indices, the index Tw provides a new perspective for heat stress assessment in China.

Key words

high temperature wet-bulb globe temperature heat stress climate change 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

We acknowledge the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP) coordination team for providing the bias-corrected GCM climate data (https://www.isimip.org/).

References

  1. American College of Sports Medicine (ACSM), 1984: Prevention of thermal injuries during distance running. Phys. Sportsmed., 12, 43–51, doi: 10.1080/00913847.1984.11701899.Google Scholar
  2. Barriopedro, D., E. M. Fischer, and J. Luterbacher, 2011: The hot summer of 2010: Redrawing the temperature record map of Europe. Science, 332, 220-224, doi: 10.1126/science. 1201224.Google Scholar
  3. Budd, G. M., 2008: Wet-bulb globe temperature (WBGT)-Its history and its limitations. J. Sci. Med. Sport, 11, 20–32, doi: 10.1016/j.jsams.2007.07.003.Google Scholar
  4. Chen K., J. Bi, J. Chen, et al., 2015: Influence of heat wave definitions to the added effect of heat waves on daily mortality in Nanjing, China. Sci. Total Environ., 506–507, 18–25, doi: 10.1016/j.scitotenv.2014.10.092.CrossRefGoogle Scholar
  5. Chen Y., and Y. Li, 2017: An inter-comparison of three heat wave types in China during 1961–2010: Observed basic features and linear trends. Sci. Rep., 7, 45619, doi: 10.1038/srep45619.CrossRefGoogle Scholar
  6. Chen Y. Y., K. Yang, J. He, et al., 2011: Improving land surface temperature modeling for dry land of China. J. Geophys. Res., 116, D20104, doi: 10.1029/2011JD015921.CrossRefGoogle Scholar
  7. China Meteorological Administration, 2015: QX/T 280–2015 Monitoring indices of high temperature extremes. Available at http://www.cmastd.cn/standardView.jspx?id=2103. Accessed on 26 March 2017. (in Chinese).Google Scholar
  8. Debele B., R. Srinivasan, and J. Y. Parlange, 2007: Accuracy evaluation of weather data generation and disaggregation methods at finer timescales. Adv. Water Res., 30, 1286–1300, doi: 10.1016/j.advwatres.2006.11.009.CrossRefGoogle Scholar
  9. Ding T., and W. H. Qian, 2011: Geographical patterns and temporal variations of regional dry and wet heatwave events in China during 1960–2008. Adv. Atmos. Sci., 28, 322–337, doi: 10.1007/s00376-010-9236-7.CrossRefGoogle Scholar
  10. Elliott J., D. Deryng, C. Müller, et al., 2014: Constraints and potentials of future irrigation water availability on agricultural production under climate change. Proc. Natl. Acad. Sci. USA, 111, 3239–3244, doi: 10.1073/pnas.1222474110.CrossRefGoogle Scholar
  11. Fischer E. M., and R. Knutti, 2013: Robust projections of combined humidity and temperature extremes. Nat. Climate Change, 3, 126–130, doi: 10.1038/nclimate1682.CrossRefGoogle Scholar
  12. Grazzini F., L. Ferranti, F. Lalaurette, et al., 2003: The exceptional warm anomalies of summer 2003. ECMWF Newslett., 99, 2–9.Google Scholar
  13. Guo X. J., J. B. Huang, Y. Luo, et al., 2017: Projection of heat waves over China for eight different global warming targets using 12 CMIP5 models. Theor. Appl. Climatol., 128, 507–522, doi: 10.1007/s00704-015-1718-1.CrossRefGoogle Scholar
  14. Guo Y. J., S. Q. Zhang, J. H. Yan, et al., 2016: A comparison of atmospheric temperature over China between radiosonde observations and multiple reanalysis datasets. J. Meteor. Res., 30, 242–257, doi: 10.1007/s13351-016-5169-0.CrossRefGoogle Scholar
  15. Hauser M., R. Orth, and S. I. Seneviratne, 2016: Role of soil moisture versus recent climate change for the 2010 heat wave in western Russia. Geophys. Res. Lett., 43, 2819–2826, doi: 10.1002/2016GL068036.CrossRefGoogle Scholar
  16. Hempel S., K. Frieler, L. Warszawski, et al., 2013: A trend-preserving bias correction—the ISI-MIP approach. Earth Syst. Dyn., 4, 219–236, doi: 10.5194/esd-4-219-2013.CrossRefGoogle Scholar
  17. Herring S. C., A. Hoell, M. P. Hoerling, et al., 2016: Explaining extreme events of 2015 from a climate perspective. Bull. Amer. Meteor. Soc., 97, S1–S145, doi: 10.1175/BAMS-ExplainingExtremeEvents2015.1.Google Scholar
  18. Hirschi M., S. I. Seneviratne, V. Alexandrov, et al., 2011: Observational evidence for soil-moisture impact on hot extremes in southeastern Europe. Nat. Geosci., 4, 17–21, doi: 10.1038/ngeo1032.CrossRefGoogle Scholar
  19. IPCC, 2013: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. T. F. Stocker, et al., Eds., Cambridge University Press, Cambridge, United Kingdom, New York, NY, USA, 1535 pp.Google Scholar
  20. Leng G. Y., Q. H. Tang, S. Z. Huang, et al., 2016: Assessments of joint hydrological extreme risks in a warming climate in China. Int. J. Climatol., 36, 1632–1642, doi: 10.1002/joc.4447.CrossRefGoogle Scholar
  21. Li Y., Y. H. Ding, and W. J. Li, 2017: Observed trends in various aspects of compound heat waves across China from 1961 to 2015. J. Meteor. Res., 31, 455–467, doi: 10.1007/s13351-017-6150-2.CrossRefGoogle Scholar
  22. Li Y. H., Y. B. Cheng, G. Q. Cui, et al., 2014: Association between high temperature and mortality in metropolitan areas of four cities in various climatic zones in China: A time-series study. Environ. Health, 13, 65, doi: 10.1186/1476-069X-13-65.CrossRefGoogle Scholar
  23. Liu X. C., Q. H. Tang, X. J. Zhang, et al., 2017: Spatially distinct effects of preceding precipitation on heat stress over eastern China. Environ. Res. Lett., 12, 115010, doi: 10.1088/1748-9326/aa88f8.CrossRefGoogle Scholar
  24. Lorenz R., D. Argüeso, M. G. Donat, et al., 2016: Influence of land–atmosphere feedbacks on temperature and precipitation extremes in the GLACE-CMIP5 ensemble. J. Geophys. Res., 121, 607–623, doi: 10.1002/2015JD024053.Google Scholar
  25. McSweeney C. F., and R. G. Jones, 2016: How representative is the spread of climate projections from the 5 CMIP5 GCMs used in ISI-MIP? Climate Serv., 1, 24–29, doi: 10.1016/j.cliser.2016.02.001.CrossRefGoogle Scholar
  26. Miao C. Y., Q. H. Sun, D. X. Kong, et al., 2016: Record-breaking heat in Northwest China in July 2015: Analysis of the severity and underlying causes. Bull. Amer. Meteor. Soc., 97, S97–S101, doi: 10.1175/BAMS-D-16-0142.1.CrossRefGoogle Scholar
  27. Mishra V., A. R. Ganguly, B. Nijssen, et al., 2015: Changes in observed climate extremes in global urban areas. Environ. Res. Lett., 10, 024005, doi: 10.1088/1748-9326/10/2/024005.CrossRefGoogle Scholar
  28. Mitchell D., 2016: Human influences on heat-related health indicators during the 2015 Egyptian heat wave. Bull. Amer. Meteor. Soc., 97, S70–S74, doi: 10.1175/BAMS-D-16-0132.1.CrossRefGoogle Scholar
  29. Mueller B., X. B. Zhang, and F. W. Zwiers, 2016: Historically hottest summers projected to be the norm for more than half of the world’s population within 20 years. Environ. Res. Lett., 11, 044011, doi: 10.1088/1748-9326/11/4/044011.CrossRefGoogle Scholar
  30. Murray F. W., 1967: On the computation of saturation vapor pressure. J. Appl. Meteor., 6, 203–204, doi: 10.1175/1520-0450(1967)006<0203:otcosv>2.0.co;2.CrossRefGoogle Scholar
  31. Qi L., and Y. Q. Wang, 2012: Changes in the observed trends in extreme temperatures over China around 1990. J. Climate, 25, 5208–5222, doi: 10.1175/jcli-d-11-00437.1.CrossRefGoogle Scholar
  32. Schar C., P. L. Vidale, D. Lüthi, et al., 2004: The role of increasing temperature variability in European summer heatwaves. Nature, 427, 332–336, doi: 10.1038/nature02300.CrossRefGoogle Scholar
  33. Schewe J., J. Heinke, D. Gerten, et al., 2014: Multimodel assessment of water scarcity under climate change. Proc. Natl. Acad. Sci. USA, 111, 3245–3250, doi: 10.1073/pnas.1222 460110.CrossRefGoogle Scholar
  34. Seneviratne S. I., T. Corti, E. L. Davin, et al., 2010: Investigating soil moisture–climate interactions in a changing climate: A review. Earth Sci. Rev., 99, 125–161, doi: 10.1016/j.earscirev.2010.02.004.CrossRefGoogle Scholar
  35. Sherwood S. C., and M. Huber, 2010: An adaptability limit to climate change due to heat stress. Proc. Natl. Acad. Sci. USA, 107, 9552–9555, doi: 10.1073/pnas.0913352107.CrossRefGoogle Scholar
  36. Steadman R. G., 1979: The assessment of sultriness. Part I: A temperature–humidity index based on human physiology and clothing science. J. Appl. Meteor., 18, 861–873, doi: 10.1175/1520-0450(1979)018<0861:taospi>2.0.co;2.CrossRefGoogle Scholar
  37. Steadman R. G., 1984: A universal scale of apparent temperature. J. Climate Appl. Meteor., 23, 1674–1687, doi: 10.1175/1520-0450(1984)023<1674:ausoat>2.0.co;2.CrossRefGoogle Scholar
  38. Sun Q. H., C. Y. Miao, A. AghaKouchak, et al., 2017: Unraveling anthropogenic influence on the changing risk of heat waves in China. Geophys. Res. Lett., 44, 5078–5085, doi: 10.1002/2017GL073531.CrossRefGoogle Scholar
  39. Sun Y., L. C. Song, H. Yin, et al., 2016: Human influence on the 2015 extreme high temperature events in western China. Bull. Amer. Meteor. Soc., 97, S102–S106, doi: 10.1175/bams-d-16-0158.1.CrossRefGoogle Scholar
  40. Sun Y., X. B. Zhang, F. W. Zwiers, et al., 2014: Rapid increase in the risk of extreme summer heat in eastern China. Nat. Climate Change, 4, 1082–1085, doi: 10.1038/nclimate2410.CrossRefGoogle Scholar
  41. Tang Q. H., X. J. Zhang, and J. A. Francis, 2014: Extreme summer weather in northern mid-latitudes linked to a vanishing cryosphere. Nat. Climate Change, 4, 45–50, doi: 10.1038/nclimate2065.CrossRefGoogle Scholar
  42. Wang J. X. L., and D. J. Gaffen, 2001: Trends in extremes of surface humidity, temperature, and summertime heat stress in China. Adv. Atmos. Sci., 18, 742–751.Google Scholar
  43. Warszawski L., K. Frieler, V. Huber, et al., 2014: The Inter-Sectoral Impact Model Intercomparison Project (ISI-MIP): Project framework. Proc. Nat. Acad. Sci. USA, 111, 3228–3232, doi: 10.1073/pnas.1312330110.CrossRefGoogle Scholar
  44. Weedon G. P., S. Gomes, P. Viterbo, et al., 2011: Creation of the WATCH forcing data and its use to assess global and regional reference crop evaporation over land during the twentieth century. J. Hydrometeor., 12, 823–848, doi: 10.1175/2011jhm1369.1.CrossRefGoogle Scholar
  45. Wehner M., D. Stone, H. Krishnan, et al., 2016: The deadly combination of heat and humidity in India and Pakistan in summer 2015. Bull. Amer. Meteor. Soc., 97, S81–S86, doi: 10.1175/BAMS-D-16-0145.1.CrossRefGoogle Scholar
  46. Willett K. M., and S. Sherwood, 2012: Exceedance of heat index thresholds for 15 regions under a warming climate using the wet-bulb globe temperature. Int. J. Climatol., 32, 161–177, doi: 10.1002/joc.2257.CrossRefGoogle Scholar
  47. Yan Z., P. D. Jones, T. D. Davies, et al., 2002: Trends of extreme temperatures in Europe and China based on daily observations. Climatic Change, 53, 355–392, doi: 10.1023/A:1014939413284.CrossRefGoogle Scholar
  48. Yang K., J. He, W. J. Tang, et al., 2010: On downward shortwave and longwave radiations over high altitude regions: Observation and modeling in the Tibetan Plateau. Agric. For. Meteor., 150, 38–46, doi: 10.1016/j.agrformet.2009.08.004.CrossRefGoogle Scholar
  49. Yin Y., Q. Tang, and X. Liu, 2015: A multi-model analysis of change in potential yield of major crops in China under climate change. Earth Syst. Dyn., 6, 45–59, doi: 10.5194/esd-6-45-2015.CrossRefGoogle Scholar
  50. Yin Y. Y., Q. H. Tang, L. X. Wang, et al., 2016: Risk and contributing factors of ecosystem shifts over naturally vegetated land under climate change in China. Sci. Rep., 6, 20905, doi: 10.1038/srep20905.CrossRefGoogle Scholar
  51. You Q. L., J. Z. Min, K. Fraedrich, et al., 2014: Projected trends in mean, maximum, and minimum surface temperature in China from simulations. Glob. Planet. Change, 112, 53–63, doi: 10.1016/j.gloplacha.2013.11.006.CrossRefGoogle Scholar
  52. You Q. L., Z. H. Jiang, L. Kong, et al., 2017: A comparison of heat wave climatologies and trends in China based on multiple definitions. Climate Dyn., 48, 3975–3989, doi: 10.1007/s00382-016-3315-0.CrossRefGoogle Scholar
  53. Zhai P. M., and X. H. Pan, 2003: Trends in temperature extremes during 1951–1999 in China. Geophys. Res. Lett., 30, 1913, doi: 10.1029/2003gl018004.CrossRefGoogle Scholar
  54. Zhang J. Y., and L. Y. Wu, 2011: Land–atmosphere coupling amplifies hot extremes over China. Chin. Sci. Bull., 56, 3328–3332, doi: 10.1007/s11434-011-4628-3.CrossRefGoogle Scholar
  55. Zhang Q., M. Z. Xiao, V. P. Singh, et al., 2015: Observational evidence of summer precipitation deficit-temperature coupling in China. J. Geophys. Res., 120, 10040–10049, doi: 10.1002/2015JD023830.Google Scholar
  56. Zhang X. J., Q. H. Tang, M. Pan, et al., 2014: A long-term land surface hydrologic fluxes and states dataset for China. J. Hydrometeor., 15, 2067–2084, doi: 10.1175/JHM-D-13-0170.1.CrossRefGoogle Scholar
  57. Zhang Y. J., Z. Q. Gao, Z. T. Pan, et al., 2017: Spatiotemporal variability of extreme temperature frequency and amplitude in China. Atmos. Res., 185, 131–141, doi: 10.1016/j.atmosres.2016.10.018.CrossRefGoogle Scholar

Copyright information

© The Chinese Meteorological Society and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Xingcai Liu
    • 1
  • Qiuhong Tang
    • 1
    • 2
  • Xuejun Zhang
    • 1
  • Siao Sun
    • 3
  1. 1.Key Laboratory of Water Cycle and Related Land Surface Processes, Institute of Geographic Sciences and Natural Resources ResearchChinese Academy of SciencesBeijingChina
  2. 2.University of Chinese Academy of SciencesBeijingChina
  3. 3.Key Laboratory of Regional Sustainable Development Modeling, Institute of Geographic Sciences and Natural Resources ResearchChinese Academy of SciencesBeijingChina

Personalised recommendations