Advertisement

Journal of Meteorological Research

, Volume 32, Issue 2, pp 265–278 | Cite as

Simulating Aerosol Size Distribution and Mass Concentration with Simultaneous Nucleation, Condensation/Coagulation, and Deposition with the GRAPES–CUACE

  • Chunhong Zhou
  • Xiaojing Shen
  • Zirui Liu
  • Yangmei Zhang
  • Jinyuan Xin
Special Collection on Aerosol-Cloud-Radiation Interactions
  • 86 Downloads

Abstract

A coupled aerosol–cloud model is essential for investigating the formation of haze and fog and the interaction of aerosols with clouds and precipitation. One of the key tasks of such a model is to produce correct mass and number size distributions of aerosols. In this paper, a parameterization scheme for aerosol size distribution in initial emission, which took into account the measured mass and number size distributions of aerosols, was developed in the GRAPES–CUACE [Global/Regional Assimilation and PrEdiction System–China Meteorological Administration (CMA) Unified Atmospheric Chemistry Environment model]—an online chemical weather forecast system that contains microphysical processes and emission, transport, and chemical conversion of sectional multi-component aerosols. In addition, the competitive mechanism between nucleation and condensation for secondary aerosol formation was improved, and the dry deposition was also modified to be in consistent with the real depositing length.

Based on the above improvements, the GRAPES–CUACE simulations were verified against observational data during 1–31 January 2013, when a series of heavy regional haze–fog events occurred in eastern China. The results show that the aerosol number size distribution from the improved experiment was much closer to the observation, whereas in the old experiment the number concentration was higher in the nucleation mode and lower in the accumulation mode. Meanwhile, the errors in aerosol number size distribution as diagnosed by its sectional mass size distribution were also reduced. Moreover, simulations of organic carbon, sulfate, and other aerosol components were improved and the overestimation as well as underestimation of PM2.5 concentration in eastern China was significantly reduced, leading to increased correlation coefficient between simulated and observed PM2.5 by more than 70%. In the remote areas where bad simulation results were produced previously, the correlation coefficient grew from 0.35 to 0.61, and the mean mass concentration went up from 43% to 87.5% of the observed value. Thus, the simulation of particulate matters in these areas has been improved considerably.

Key words

GRAPES–CUACE number size distribution sectional multi-components aerosol 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

The authors wish to thank Ms. Hua Liu of the China Meteorological Administration Training Centre and Dr. Qiudan Dai of the Institute of Atmospheric Physics, Chinese Academy of Sciences for providing language help.

References

  1. Adams, P. J., and J. H. Seinfeld, 2002: Predicting global aerosol size distributions in general circulation models. J. Geophys. Res., 107, 4370, doi: 10.1029/2001JD001010.CrossRefGoogle Scholar
  2. Andreae, M. O., and D. Rosenfeld, 2008: Aerosol–cloud–precipitation interactions. Part 1. The nature and sources of cloudactive aerosols. Earth-Sci. Rev., 89, 13–41, doi: 10.1016/j.earscirev.2008.03.001.Google Scholar
  3. Berner, A., S. Sidla, Z. Galambos, et al., 1996: Modal character of atmospheric black carbon size distributions. J. Geophys. Res., 101, 19,559–19,565, doi: 10.1029/95JD03425.CrossRefGoogle Scholar
  4. Deshler, T., M. E. Hervig, D. J. Hofmann, et al., 2003: Thirty years of in situ stratospheric aerosol size distribution measurements from Laramie, Wyoming (41°N), using balloonborne instruments. J. Geophys. Res., 108, 4167, doi: 10.1029/2002jd002514.CrossRefGoogle Scholar
  5. Dusek, U., G. P. Frank, L. Hildebrandt, et al., 2006: Size matters more than chemistry for cloud-nucleating ability of aerosol particles. Science, 312, 1375–1378, doi: 10.1126/science.1125261.CrossRefGoogle Scholar
  6. Fuchs, N. A., and C. N. Davies, 1964: Aerosol mechanics. (Book Reviews: The Mechanics of Aerosols). Science, 146, 1033–1034, doi: 10.1126/science.146.3647.1033.Google Scholar
  7. Fuchs, N. A., and A. G. Sutugin, 1971: High-dispersed aerosols. Topics in Current Aerosol Research, G. M. Hidy, and J. R. Brock, Eds., New York, Elsevier, 38–47.Google Scholar
  8. Gao, J., J. Wang, S.-H. Cheng, et al., 2007: Number concentration and size distributions of submicron particles in Jinan urban area: Characteristics in summer and winter. J. Environ. Sci., 19, 1466–1473, doi: 10.1016/s1001-0742(07)60239-3.CrossRefGoogle Scholar
  9. Gelbard, F., and J. H. Seinfeld, 1980: Simulation of multicomponent aerosol dynamics. J. Colloid Interface Sci., 78, 485–501, doi: 10.1016/0021-9797(80)90587-1.CrossRefGoogle Scholar
  10. Gong, S. L., L. A. Barrie, and J.-P. Blanchet, 1997: Modeling seasalt aerosols in the atmosphere: 1. Model development. J. Geophys. Res., 102, 3805–3818, doi: 10.1029/96JD02953.CrossRefGoogle Scholar
  11. Gong, S. L., L. A. Barrie, J.-P. Blanchet, et al., 2003: Canadian aerosol module: A size-segregated simulation of atmospheric aerosol processes for climate and air quality models. 1. Module development. J. Geophys. Res., 108, 4007, doi: 10.1029/2001JD002002.CrossRefGoogle Scholar
  12. Han, X., M. Zhang, J. Gao, et al., 2014: Modeling analysis of the seasonal characteristics of haze formation in Beijing. Atmos. Chem. Phys., 14, 10231–10248, doi: 10.5194/acp-14-10231-2014.CrossRefGoogle Scholar
  13. Huang, R. J., Y. Zhang, C. Bozzetti, et al., 2014: High secondary aerosol contribution to particulate pollution during haze events in China. Nature, 514, 218–222, doi: 10.1038/nature13774.CrossRefGoogle Scholar
  14. Jacobson, M. Z., 1997: Numerical techniques to solve condensational and dissolutional growth equations when growth is coupled to reversible reactions. Aerosol Sci. Technol., 27, 491–498, doi: 10.1080/02786829708965489.CrossRefGoogle Scholar
  15. Jacobson, M. Z., and R. P. Turco, 1995: Simulating condensational growth, evaporation, and coagulation of aerosols using a combined moving and stationary size grid. Aerosol Sci. Technol., 22, 73–92, doi: 10.1080/02786829408959729.CrossRefGoogle Scholar
  16. Jacobson, M. Z., R. P. Turco, E. J. Jensen, et al., 1994: Modeling coagulation among particles of different composition and size. Atmos. Environ., 28, 1327–1338, doi: 10.1016/1352-2310(94)90280-1.CrossRefGoogle Scholar
  17. Kang, H. Q., B. Zhu, and S. G. Fan, 2009: Size distributions and wet scavening properties of winter aerosol particles in north suburb of Nanjing. Climatic Environ. Res., 14, 523–530, doi: 10.3878/j.issn.1006-9585.2009.05.07. (in Chinese)Google Scholar
  18. Ku, B. K., and D. E. Evans, 2012: Investigation of aerosol surface area estimation from number and mass concentration measurements: Particle density effect. Aerosol Sci. Technol., 46, 473–484, doi: 10.1080/02786826.2011.639316.CrossRefGoogle Scholar
  19. Kulmala, M., A. Laaksonen, L. Pirjola, 1998: Parameterizations for sulfuric acid/water nucleation rates. J. Geophys. Res., 103, 8301–8307, doi: 10.1029/97JD03718.CrossRefGoogle Scholar
  20. Kulmala, M., H. Vehkamäki, T. Petäjä, et al., 2004: Formation and growth rates of ultrafine atmospheric particles: A review of observations. J. Aerosol Sci., 35, 143–176, doi: 10.1016/j.jaerosci.2003.10.003.CrossRefGoogle Scholar
  21. Lang, F. L., W. Q. Yan, Q. Zhang, et al., 2013: Size distribution of atmospheric particle number in Beijing and association with meteorological conditions. China Environ. Sci., 33, 1153–1159. (in Chinese)Google Scholar
  22. Li, J. X., Y. Yin, P. R. Li, et al., 2015: Aircraft measurements of the vertical distribution and activation property of aerosol particles over the Loess Plateau in China. Atmos. Res., 155, 73–86, doi: 10.1016/j.atmosres.2014.12.004.CrossRefGoogle Scholar
  23. Liu, Z. R., B. Hu, Q. Liu, et al., 2014: Source apportionment of urban fine particle number concentration during summertime in Beijing. Atmos. Environ., 96, 359–369, doi: 10.1016/j.atmosenv2014.06.055.CrossRefGoogle Scholar
  24. Liu, Z. R., Y. S. Wang, B. Hu, et al., 2016: Source appointment of fine particle number and volume concentration during severe haze pollution in Beijing in January 2013. Environ. Sci. Pollut. Res., 23, 6845–6860, doi: 10.1007/s11356-015-5868-6.CrossRefGoogle Scholar
  25. Meng, Z. Y., D. Dabdub, and J. H. Seinfeld, 1998: Size-resolved and chemically resolved model of atmospheric aerosol dynamics. J. Geophys. Res., 103, 3419–3435, doi: 10.1029/97jd02796.CrossRefGoogle Scholar
  26. Nenes, A., S. N. Pandis, and C. Pilinis, 1998: ISORROPIA: A new thermodynamic equilibrium model for multiphase multicomponent inorganic aerosols. Aquat. Geochem., 4, 123–152, doi: 10.1023/A:1009604003981.CrossRefGoogle Scholar
  27. Park, R. J., and S.-W. Kim, 2014: Air quality modeling in East Asia: Present issues and future directions. Asia-Pac. J. Atmos. Sci., 50, 105–120, doi: 10.1007/s13143-014-0030-9.CrossRefGoogle Scholar
  28. Peng, J. F., M. Hu, Z. B. Wang, et al., 2014: Submicron aerosols at thirteen diversified sites in China: Size distribution, new particle formation and corresponding contribution to cloud condensation nuclei production. Atmos. Chem. Phys., 14, 10249–10265, doi: 10.5194/acp-14-10249-2014.CrossRefGoogle Scholar
  29. Seigneur, C., A. B. Hudischewskyj, J. H. Seinfeld, et al., 1986: Simulation of aerosol dynamics: A comparative review of mathematical models. Aerosol Sci. Technol., 5, 205–222, doi: 10.1080/02786828608959088.CrossRefGoogle Scholar
  30. Shampine, L. F., and C. W. Gear, 1979: A user’s view of solving stiff ordinary differential equations. SIAM Rev., 21, 1–17, doi: 10.1137/1021001.CrossRefGoogle Scholar
  31. Shen, X. J., J. Y. Sun, Y. M. Zhang, et al., 2011: First long-term study of particle number size distributions and new particle formation events of regional aerosol in the North China Plain. Atmos. Chem. Phys., 11, 1565–1580, doi: 10.5194/acp-11-1565-2011.CrossRefGoogle Scholar
  32. Shen, X. J., J. Y. Sun, X. Y. Zhang, et al., 2015: Characterization of submicron aerosols and effect on visibility during a severe haze–fog episode in Yangtze River delta, China. Atmos. Environ., 120, 307–316, doi: 10.1016/j.atmosenv.2015.09.011.CrossRefGoogle Scholar
  33. Slinn, W. G. N., 1982: Predictions for particle deposition to vegetative canopies. Atmos. Environ., 16, 1785–1794, doi: 10.1016/0004-6981(82)90271-2.CrossRefGoogle Scholar
  34. Slinn, W. G. N., 1984: Precipitation scavenging. Atmospheric Science and Power Production. D. Randerson, Ed., Office of Scientific and Technical Information, Ork Ridge, USA, 466–532.Google Scholar
  35. Stockwell, W. R., P. Middleton, J. S. Chang, et al., 1990: The second generation regional acid deposition model chemical mechanism for regional air quality modeling. J. Geophys. Res., 95, 16343–16376, doi: 10.1029/JD095iD10p16343.CrossRefGoogle Scholar
  36. Tsang, T. H., and A. Rao, 1988: Comparison of different numerical schemes for condensational growth of aerosols. Aerosol Sci. Technol., 9, 271–277, doi: 10.1080/02786828808959214.CrossRefGoogle Scholar
  37. Venzac, H., K. Sellegri, P. Villani, et al., 2009: Seasonal variation of aerosol size distributions in the free troposphere and residual layer at the puy de Dôme station, France. Atmos. Chem. Phys., 9, 1465–1478, doi: 10.5194/acp-9-1465-2009.CrossRefGoogle Scholar
  38. Wang, H., X. Y. Zhang, S. L. Gong, et al., 2010: Radiative feedback of dust aerosols on the East Asian dust storms. J. Geophys. Res., 115, D23214, doi: 10.1029/2009JD013430.CrossRefGoogle Scholar
  39. Wang, H. L., B. Zhu, L. J. Shen, et al., 2014: Number size distribution of aerosols at Mt. Huang and Nanjing in the Yangtze River Delta, China: Effects of air masses and characteristics of new particle formation. Atmos. Res., 150, 42–56, doi: 10.1016/j.atmosres.2014.07.020.Google Scholar
  40. Wang, Y. S., L. Yao, L. L. Wang, et al., 2014: Mechanism for the formation of the January 2013 heavy haze pollution episode over central and eastern China. Sci. China Earth Sci., 57, 14–25, doi: 10.1007/s11430-013-4773-4.CrossRefGoogle Scholar
  41. Wang, Y. Q., X. Y. Zhang, J. Y. Sun, et al., 2015: Spatial and temporal variations of the concentrations of PM10, PM2.5 and PM1 in China. Atmos. Chem. Phys., 15, 13585–13598, doi: 10.5194/acp-15-13585-2015.CrossRefGoogle Scholar
  42. Warren, D. R., and J. H. Seinfeld, 1985: Simulation of aerosol size distribution evolution in systems with simultaneous nucleation, condensation, and coagulation. Aerosol Sci. Technol., 4, 31–43, doi: 10.1080/02786828508959037.CrossRefGoogle Scholar
  43. Willeke, K., and K. T. Whitby, 1975: Atmospheric aerosols: Size distribution interpretation. J. Air Pollut. Contr. Assoc., 25, 529–534, doi: 10.1080/00022470.1975.10470110.CrossRefGoogle Scholar
  44. Wu, C. Y., and P. Biswas, 1998: Study of numerical diffusion in a discrete-sectional model and its application to aerosol dynamics simulation. Aerosol Sci. Technol., 29, 359–378, doi: 10.1080/02786829808965576.CrossRefGoogle Scholar
  45. Wu, Z. J., M. Hu, P. Lin, et al., 2008: Particle number size distribution in the urban atmosphere of Beijing, China. Atmos. Environ., 42, 7967–7980, doi: 10.1016/j.atmosenv.2008.06.022.CrossRefGoogle Scholar
  46. Xu, H. H., Y. S. Wang, T. X. Wen, et al., 2007: Size distributions and vertical distributions of metal elements of atmospheric aerosol in Beijing. Environ. Sci., 26, 675–679, doi: 10.3321/j.issn:0254-6108.2007.05.027.Google Scholar
  47. Xu, P. J., W. X. Wang, L. X. Yang, et al., 2011: Aerosol size distributions in urban Jinan: Seasonal characteristics and variations between weekdays and weekends in a heavily polluted atmosphere. Environ. Monit. Assess., 179, 443–456, doi: 10.1007/s10661-010-1747-2.CrossRefGoogle Scholar
  48. Yue, D. L., M. Hu, Z. B. Wang, et al., 2013: Comparison of particle number size distributions and new particle formation between the urban and rural sites in the PRD Region, China. Atmos. Environ., 76, 181–188, doi: 10.1016/j.atmosenv.2012.11.018.CrossRefGoogle Scholar
  49. Zhang, L. M., S. L. Gong, J. Padro, et al., 2001: A size-segregated particle dry deposition scheme for an atmospheric aerosol module. Atmos. Environ., 35, 549–560, doi: 10.1016/S1352-2310(00)00326-5.CrossRefGoogle Scholar
  50. Zhang, X. Y., Y. Q. Wang, X. C. Zhang, et al., 2008: Carbon-aceous aerosol composition over various regions of China during 2006. J. Geophys. Res., 113, D14111, doi: 10.1029/2007JD009525.CrossRefGoogle Scholar
  51. Zhang, X. Y., Y. Q. Wang, T. Niu, et al., 2012: Atmospheric aerosol compositions in China: Spatial/temporal variability, chemical signature, regional haze distribution and comparisons with global aerosols. Atmos. Chem. Phys, 12, 779–799, doi: 10.5194/acp-12-779-2012.CrossRefGoogle Scholar
  52. Zhang, Y., C. Seigneur, J. H. Seinfeld, et al., 1999: Simulation of aerosol dynamics: A comparative review of algorithms used in air quality models. Aerosol Sci. Technol., 31, 487–514, doi: 10.1080/027868299304039.CrossRefGoogle Scholar
  53. Zhang, Y., R. C. Easter, S. J. Ghan, et al., 2002: Impact of aerosol size representation on modeling aerosol–cloud interactions. J. Geophys. Res., 107, 4558, doi: 10.1029/2001jd001549.Google Scholar
  54. Zhang, Y. M., X. Y. Zhang, J. Y. Sun, et al., 2014: Chemical composition and mass size distribution of PM1 at an elevated site in central East China. Atmos. Chem. Phys., 14, 12237–12249, doi: 10.5194/acp-14-12237-2014.CrossRefGoogle Scholar
  55. Zhou, C. H., S. L. Gong, X. Y. Zhang, et al., 2012: Towards the improvements of simulating the chemical and optical properties of Chinese aerosols using an online coupled model —CUACE/Aero. Tellus B, 64, 18965, doi: 10.3402/tellusb.v64i0.18965.CrossRefGoogle Scholar
  56. Zhou, C. H., X. Zhang, S. Gong, et al., 2016: Improving aerosol interaction with clouds and precipitation in a regional chemical weather modeling system. Atmos. Chem. Phys., 16, 145–160, doi: 10.5194/acp-16-145-2016.CrossRefGoogle Scholar
  57. Zhong, J. T., X. Y. Zhang, Y. Q. Wang, et al., 2017: Relative contributions of boundary-layer meteorological factors to the explosive growth of PM2.5 during the red-alert heavy pollution episodes in Beijing in December 2016. J. Meteor. Res., 31, 809–819, doi: 10.1007/s13351-017-7088-0.CrossRefGoogle Scholar

Copyright information

© The Chinese Meteorological Society and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Chunhong Zhou
    • 1
    • 3
  • Xiaojing Shen
    • 1
  • Zirui Liu
    • 2
  • Yangmei Zhang
    • 1
  • Jinyuan Xin
    • 2
  1. 1.State Key Laboratory of Severe Weather/Key Laboratory of Atmospheric Chemistry of China Meteorological AdministrationChinese Academy of Meteorological SciencesBeijingChina
  2. 2.Institute of Atmospheric PhysicsChinese Academy of SciencesBeijingChina
  3. 3.Jiangsu Collaborative Innovation Center of Climate ChangeNanjingChina

Personalised recommendations