Advertisement

Journal of Meteorological Research

, Volume 32, Issue 3, pp 469–490 | Cite as

Evaluation of the Forecast Accuracy of Near-Surface Temperature and Wind in Northwest China Based on the WRF Model

  • Haixia Duan
  • Yaohui Li
  • Tiejun Zhang
  • Zhaoxia Pu
  • Cailing Zhao
  • Yuanpu Liu
Special Collection on Weather and Climate Under Complex Terrain and Variable Land Surfaces: Observations and Numerical Simulations

Abstract

This study investigated the performance of the mesoscale Weather Research and Forecasting (WRF) model in predicting near-surface atmospheric temperature and wind for a complex underlying surface in Northwest China in June and December 2015. The spatial distribution of the monthly average bias errors in the forecasts of 2-m temperature and 10-m wind speed is analyzed first. It is found that the forecast errors for 2-m temperature and 10-m wind speed in June are strongly correlated with the terrain distribution. However, this type of correlation is not apparent in December, perhaps due to the inaccurate specification of the surface albedo and freezing–thawing process of frozen soil in winter in Northwest China in the WRF model. In addition, the WRF model is able to reproduce the diurnal variation in 2-m temperature and 10-m wind speed, although with weakened magnitude. Elevations and land-use types have strong influences on the forecast of near-surface variables with seasonal variations. The overall results imply that accurate specification of the complex underlying surface and seasonal changes in land cover is necessary for improving near-surface forecasts over Northwest China.

Key words

Weather Research and Forecasting (WRF) model complex terrain near-surface forecasts diurnal variation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

We appreciate the constructive comments and suggestions from the two anonymous reviewers.

References

  1. Ancell B. C., C. F. Mass, and G. J. Hakim, 2011: Evaluation of surface analyses and forecasts with a multiscale ensemble Kalman filter in regions of complex terrain. Mon. Wea. Rev., 139, 2008–2024, doi: 10.1175/2010MWR3612.1.CrossRefGoogle Scholar
  2. Byun D., F. Ngan, X. S. Li, et al., 2008: Evaluation of Retrospective MM5 and CMAQ Simulation of TexAQS-II Period with CAMS Measurements. Texas Commission on Environmental Quality Final Rep., Grant No. 582-5-64594-FY07-02, 30 pp.Google Scholar
  3. Cao F. Q., L. Dan, and Z. G. Ma, 2015: Simulative study of the impact of the cropland change on the regional climate over China. Acta Meteor. Sinica, 73, 128–141, doi: 10.11676/qxxb2015.001. (in Chinese)Google Scholar
  4. Chen B., A. F. Stein, N. Castell, et al., 2012: Modeling and surface observations of arsenic dispersion from a large Cu-smelter in southwestern Europe. Atmos. Environ., 49, 114–122, doi: 10.1016/j.atmosenv.2011.12.014.CrossRefGoogle Scholar
  5. Chen H. S., and Y. Zhang, 2013: Sensitivity experiments of impacts of large-scale urbanization in East China on East Asian winter monsoon. Chinese Sci. Bull., 58, 809–815, doi: 10.1007/s11434-012-5579-z.CrossRefGoogle Scholar
  6. Chen H. S., X. Li, and W. J. Hua, 2015: Numerical simulation of the impact of land use/land cover change over China on regional climates during the last 20 years. Chinese J. Atmos. Sci., 39, 357–369, doi: 10.3878/j.issn.1006-9895.1404.14114. (in Chinese)Google Scholar
  7. Cheng F. Y., Y. C. Hsu, P. L. Lin, et al., 2013: Investigation of the effects of different land use and land cover patterns on mesoscale meteorological simulations in the Taiwan area. J. Appl. Meteor. Climatol., 52, 570–587, doi: 10.1175/JAMC-D-12-0109.1.CrossRefGoogle Scholar
  8. Cheng W. Y. Y., and W. J. Steenburgh, 2005: Evaluation of surface sensible weather forecasts by the WRF and the Eta models over the western United States. Wea. Forecasting, 20, 812–821, doi: 10.1175/WAF885.1.CrossRefGoogle Scholar
  9. Comarazamy D. E., J. E. González, J. C. Luvall, et al., 2013: Climate impacts of land-cover and land-use changes in tropical islands under conditions of global climate change. J. Climate, 26, 1535–1550, doi: 10.1175/JCLI-D-12-00087.1.CrossRefGoogle Scholar
  10. Dudhia J., 1989: Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. J. Atmos. Sci., 46, 3077–3107, doi: 10.1175/1520-0469(1989)046<3077:NSOCOD>2.0.CO;2.CrossRefGoogle Scholar
  11. Ek M. B., K. E. Mitchell, Y. Lin, et al., 2003: Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta model. J. Geophys. Res., 108, 8851, doi: 10.1029/2002JD003296.CrossRefGoogle Scholar
  12. Gómez-Navarro J. J., C. C. Raible, and S. Dierer, 2015: Sensitivity of the WRF model to PBL parametrisations and nesting techniques: Evaluation of surface wind over complex terrain. Geosci. Model Dev., 8, 3349–3363, doi: 10.5194/gmd-8-3349-2015.CrossRefGoogle Scholar
  13. Hanna S. R., and R. X. Yang, 2001: Evaluations of mesoscale models’ simulations of near-surface winds, temperature gradients, and mixing depths. J. Appl. Meteor., 40, 1095–1104, doi: 10.1175/1520-0450(2001)040<1095:EOMMSO>2.0.CO;2.CrossRefGoogle Scholar
  14. He J. J., Y. Yu, N. Liu, et al, 2014: Impact of land surface information on WRF’s performance in complex terrain area. Chinese J. Atmos. Sci., 38, 484–498, doi: 10.3878/j.issn.1006-9895. 2013.13186. (in Chinese)Google Scholar
  15. Hirsch, A L., A. J. Pitman, J. Kala, et al., 2015: Modulation of land-use change impacts on temperature extremes via land–atmosphere coupling over Australia. Earth Interactions, 19, 1–24, doi: 10.1175/EI-D-15-0011.1.CrossRefGoogle Scholar
  16. Hu, X.-M., P. M. Klein, and M. Xue, 2013: Evaluation of the updated YSU planetary boundary layer scheme within WRF for wind resource and air quality assessments. J. Geophys. Res., 118, 10490–10505, doi: 10.1002/jgrd.50823.Google Scholar
  17. Jiménez P. A., and J. Dudhia, 2012: Improving the representation of resolved and unresolved topographic effects on surface wind in the WRF model. J. Appl. Meteor. Climatol., 51, 300–316, doi: 10.1175/JAMC-D-11-084.1.CrossRefGoogle Scholar
  18. Jiménez P. A., and J. Dudhia, 2013: On the ability of the WRF model to reproduce the surface wind direction over complex terrain. J. Appl. Meteor. Climatol., 52, 1610–1617, doi: 10.1175/JAMC-D-12-0266.1.CrossRefGoogle Scholar
  19. Jin L. L., Z. J. Li, Q. He, et al., 2016: Observation and simulation of near-surface wind and its variation with topography in Urumqi, West China. J. Meteor. Res., 30, 961–982, doi: 10.1007/s13351-016-6012-3.CrossRefGoogle Scholar
  20. Kabat P., M. Claussen, S. Whitlock, et al., 2004: Vegetation, Water, Humans and the Climate: A New Perspective on an Interactive System. Springer, Berlin Heidelberg, 566 pp, doi: 10.1007/978-3-642-18948-7.CrossRefGoogle Scholar
  21. Kain J. S., 2004: The Kain–Fritsch convective parameterization: An update. J. Appl. Meteor., 43, 170–181, doi: 10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2.CrossRefGoogle Scholar
  22. Kim Y., and G. L. Wang, 2007: Impact of vegetation feedback on the response of precipitation to antecedent soil moisture anomalies over North America. J. Hydrometeor., 8, 534–550, doi: 10.1175/JHM612.1.CrossRefGoogle Scholar
  23. Lee S. H., S. W. Kim, W. M. Angevine, et al., 2011: Evaluation of urban surface parameterizations in the WRF model using measurements during the Texas Air Quality Study 2006 field campaign. Atmos. Chem. Phys., 11, 2127–2143, doi: 10.5194/acp-11-2127-2011.CrossRefGoogle Scholar
  24. Lee T. J., R. A. Pielke, R. C. Kessler, et al., 1989: Influence of cold pools downstream of mountain barriers on downslope winds and flushing. Mon. Wea. Rev., 117, 2041–2058, doi: 10.1175/1520-0493(1989)117<2041:IOCPDO>2.0.CO;2.CrossRefGoogle Scholar
  25. Lim Y. K., M. Cai, E. Kalnay, et al., 2008: Impact of vegetation types on surface temperature change. J. Appl. Meteor. Climatol., 47, 411–424, doi: 10.1175/2007JAMC1494.1.CrossRefGoogle Scholar
  26. Liu J. Y., W. H. Kuang, Z. X. Zhang, et al., 2014: Spatiotemporal characteristics, patterns and causes of land-use changes in China since the late 1980s. Acta Geogra. Sinica, 69, 3–14, doi: 10.11821/dlxb201401001. (in Chinese)Google Scholar
  27. Lorente-Plazas R., P. A. Jiménez, J. Dudhia, et al., 2016: Evaluating and improving the impact of the atmospheric stability and orography on surface winds in the WRF model. Mon. Wea. Rev., 144, 2685–2693, doi: 10.1175/MWR-D-15-0449.1.CrossRefGoogle Scholar
  28. Mass C. F., D. Ovens, K. Westrick, et al., 2002: Does increasing horizontal resolution produce more skillful forecasts? Bull. Amer. Meteor. Soc., 83, 407–430, doi: 10.1175/1520-0477(2002)083<0407:DIHRPM>2.3.CO;2.CrossRefGoogle Scholar
  29. Meng X. H., J. P. Evans, and M. F. McCabe, 2014: The impact of observed vegetation changes on land–atmosphere feedbacks during drought. J. Hydrometeor., 15, 759–776, doi: 10.1175/JHM-D-13-0130.1.CrossRefGoogle Scholar
  30. Mesinger F., G. DiMego, E. Kalnay, et al., 2006: North American regional reanalysis. Bull. Amer. Meteor. Soc., 87, 343–360, doi: 10.1175/BAMS-87-3-343.CrossRefGoogle Scholar
  31. Mlawer E. J., S. J. Taubman, P. D. Brown, et al., 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102, 16663–16682, doi: 10.1029/97JD00237.CrossRefGoogle Scholar
  32. Ngan F., D. Byun, H. Kim, et al., 2012: Performance assessment of retrospective meteorological inputs for use in air quality modeling during TexAQS 2006. Atmos. Environ., 54, 86–96, doi: 10.1016/j.atmosenv.2012.01.035.CrossRefGoogle Scholar
  33. Ngan F., H. Kim, P. Lee, et al., 2013: A study of nocturnal surface wind speed overprediction by the WRF-ARW model in southeastern Texas. J. Appl. Meteor. Climatol., 52, 2638–2653, doi: 10.1175/JAMC-D-13-060.1.CrossRefGoogle Scholar
  34. Oke T. R., 1987: Boundary Layer Climates. Cambridge University Press, Cambridge, 435 pp.Google Scholar
  35. Pan X. D., X. Li, Y. H. Ran, et al., 2012: Impact of underlying surface information on WRF modeling in Heihe River basin. Plateau Meteor., 31, 657–667. (in Chinese)Google Scholar
  36. Pei L. S., N. Moore, S. Y. Zhong, et al., 2014: WRF model sensitivity to land surface model and cumulus parameterization under short-term climate extremes over the Southern Great Plains of the United States. J. Climate, 27, 7703–7724, doi: 10.1175/JCLI-D-14-00015.1.CrossRefGoogle Scholar
  37. Pleim J. E., 2007a: A combined local and nonlocal closure model for the atmospheric boundary layer. Part I: Model description and testing. J. Appl. Meteor. Climatol., 46, 1383–1395, doi: 10.1175/JAM2539.1.CrossRefGoogle Scholar
  38. Pleim J. E., 2007b: A combined local and nonlocal closure model for the atmospheric boundary layer. Part II: Application and evaluation in a mesoscale meteorological model. J. Appl. Meteor. Climatol., 46, 1396–1409, doi: 10.1175/JAM2534.1.CrossRefGoogle Scholar
  39. Price J. C., 1977: Thermal inertia mapping: A new view of the earth. J. Geophys. Res., 82, 2582–2590, doi: 10.1029/JC082i018p02582.CrossRefGoogle Scholar
  40. Price J. C., 1980: The potential of remotely sensed thermal infrared data to infer surface soil moisture and evaporation. Water Resour. Res., 16, 787–795, doi: 10.1029/WR016i004p00787.CrossRefGoogle Scholar
  41. Pu Z. X., H. L. Zhang, and J. A. Anderson, 2013: Ensemble Kalman filter assimilation of near-surface observations over complex terrain: Comparison with 3DVAR for short-range fore-casts. Tellus A, 65, 19620, doi: 10.3402/tellusa.v65i0.19620.CrossRefGoogle Scholar
  42. Rife D. R., C. A. Davis, Y. B. Liu, et al., 2004: Predictability of low-level winds by mesoscale meteorological models. Mon. Wea. Rev., 132, 2533–2569, doi: 10.1175/MWR2801.1.CrossRefGoogle Scholar
  43. Rowell D. P., and J. R. Milford, 1993: On the generation of African squall lines. J. Climate, 6, 1181–1193, doi: 10.1175/1520-0442(1993)006<1181:OTGOAS>2.0.CO;2.CrossRefGoogle Scholar
  44. Ruiz J. J., C. Saulo, and J. Nogués-Paegle, 2010: WRF model sensitivity to choice of parameterization over South America: Validation against surface variables. Mon. Wea. Rev., 138, 3342–3355, doi: 10.1175/2010MWR3358.1.CrossRefGoogle Scholar
  45. Santos-Alamillos F. J., D. Pozo-Vázquez, J. A. Ruiz-Arias, et al., 2013: Analysis of WRF model wind estimate sensitivity to physics parameterization choice and terrain representation in Andalusia (southern Spain). J. Appl. Meteor. Climatol., 52, 1592–1609, doi: 10.1175/JAMC-D-12-0204.1.CrossRefGoogle Scholar
  46. Scheitlin K. N., and P. G. Dixon, 2010: Diurnal temperature range variability due to land cover and airmass types in the Southeast. J. Appl. Meteor. Climatol., 49, 879–888, doi: 10.1175/2009JAMC2322.1.CrossRefGoogle Scholar
  47. Sheng L. F., K. H. Schlunzen, and Z. M. Wu, 2000: Three-dmensional numerical simulation of the mesoscale wind structure over Shandong Peninsula. Acta Meteor. Sinica, 14, 98–107.Google Scholar
  48. Siuta D., G. West, and R. Stull, 2017: WRF hub-height wind forecast sensitivity to PBL scheme, grid length, and initial condition choice in complex terrain. Wea. Forecasting, 32, 493–509, doi: 10.1175/WAF-D-16-0120.1.CrossRefGoogle Scholar
  49. Smith R. B., and Y.-L. Lin, 1982: The addition of heat to a stratified airstream with application to the dynamics of orographic rain. Quart. J. Roy. Meteor. Soc., 108, 353–378, doi: 10.1002/qj.49710845605.CrossRefGoogle Scholar
  50. Stull R. B., 1988: An Introduction to Boundary Layer Meteorology. Springer, Netherlands, 666 pp, doi: 10.1007/978-94-009-3027-8.CrossRefGoogle Scholar
  51. Tao S. Y., 1980: Heavy Rainfalls in China. Science Press, Beijing, 225 pp. (in Chinese)Google Scholar
  52. Wang C. H., and S. L. Jin, 2013: Error features and their possible causes in simulated low-level winds by WRF at a wind farm. Wind Energy, 17, 1315–1325, doi: 10.1002/we.1635.Google Scholar
  53. Whiteman C. D., 2000: Mountain Meteorology: Fundamentals and Applications. Oxford University Press, Oxford, 355 pp.Google Scholar
  54. Wu Z. M., and K. H. Schlunzen, 1992: Numerical study on the local wind structures forced by the complex terrain of Qingdao area. Acta Meteor. Sinica, 6, 355–366.Google Scholar
  55. Xin J. Y., C. S. Gong, S. G. Wang, et al., 2016: Aerosol direct radiative forcing in desert and semi-desert regions of northwestern China. Atmos. Res., 171, 56–65, doi: 10.1016/j.atmosres. 2015.12.004.CrossRefGoogle Scholar
  56. Yucel I., 2006: Effects of implementing MODIS land cover and albedo in MM5 at two contrasting U. S. regions. J. Hydrometeor., 7, 1043–1060, doi: 10.1175/JHM536.1.CrossRefGoogle Scholar
  57. Zhang, D.-L., and W. Z. Zheng, 2004: Diurnal cycles of surface winds and temperatures as simulated by five boundary layer parameterizations. J. Appl. Meteor., 43, 157–169, doi: 10.1175/ 1520-0450(2004)043<0157:DCOSWA>2.0.CO;2.CrossRefGoogle Scholar
  58. Zhang F. M., Y. Yang, and C. H. Wang, 2015: The effects of assimilating conventional and ATOVS data on forecasted nearsurface wind with WRF-3DVAR. Mon. Wea. Rev., 143, 153–164, doi: 10.1175/MWR-D-14-00038.1.CrossRefGoogle Scholar
  59. Zhang H. L., Z. X. Pu, and X. B. Zhang, 2013: Examination of errors in near-surface temperature and wind from WRF numerical simulations in regions of complex terrain. Wea. Forecasting, 28, 893–914, doi: 10.1175/WAF-D-12-00109.1.CrossRefGoogle Scholar
  60. Zhang Y., X. Y. Wen, and C. J. Jang, 2010: Simulating chemistry–aerosol–cloud–radiation–climate feedbacks over the continental U.S. using the online-coupled Weather Research Forecasting Model with chemistry (WRF/Chem). Atmos. Environ., 44, 3568–3582, doi: 10.1016/j.atmosenv.2010.05.056.CrossRefGoogle Scholar
  61. Zheng D., R. van der Velde, Z. Su, et al., 2014: Assessment of roughness length schemes implemented within the Noah land surface model for high-altitude regions. J. Hydrometeor., 15, 921–937, doi: 10.1175/JHM-D-13-0102.1.CrossRefGoogle Scholar
  62. Zheng D., R. van der Velde, Z. Su, et al., 2017: Assessment of Noah land surface model with various runoff parameterizations over a Tibetan river. J. Geophy. Res. Atmos., 122, 1488–1504, doi: 10.1002/2016JD025572.CrossRefGoogle Scholar
  63. Zheng D., R. van der Velde, Z. Su, et al., 2017: Evaluation of Noah frozen soil parameterization for application to a Tibetan Meadow Ecosystem. J. Hydrometeor., doi: 10.1175/JHM-D-16-0199.1.Google Scholar
  64. Zhong S. Y., and J. Fast, 2003: An evaluation of the MM5, RAMS, and Meso-Eta models at subkilometer resolution using VTMX field campaign data in the Salt Lake valley. Mon. Wea. Rev., 131, 1301–1322, doi: 10.1175/1520-0493(2003)131<1301:AEOTMR>2.0.CO;2.CrossRefGoogle Scholar

Copyright information

© The Chinese Meteorological Society and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Haixia Duan
    • 1
  • Yaohui Li
    • 1
  • Tiejun Zhang
    • 1
  • Zhaoxia Pu
    • 2
  • Cailing Zhao
    • 1
  • Yuanpu Liu
    • 1
  1. 1.Northwestern Regional Center of Numerical Weather Prediction/Key Laboratory of Arid Climate Change and Disaster Reduction of China Meteorological Administration (CMA) and Gansu ProvinceInstitute of Arid Meteorology of CMALanzhouChina
  2. 2.Department of Atmospheric SciencesThe University of UtahSalt Lake CityUSA

Personalised recommendations