Advertisement

Journal of Meteorological Research

, Volume 32, Issue 2, pp 191–202 | Cite as

Recent Rapid Decline of the Arctic Winter Sea Ice in the Barents–Kara Seas Owing to Combined Effects of the Ural Blocking and SST

  • Binhe Luo
  • Yao Yao
Regular Articles
  • 83 Downloads

Abstract

This study investigates why the Arctic winter sea ice loss over the Barents–Kara Seas (BKS) is accelerated in the recent decade. We first divide 1979–2013 into two time periods: 1979–2000 (P1) and 2001–13 (P2), with a focus on P2 and the difference between P1 and P2. The results show that during P2, the rapid decline of the sea ice over the BKS is related not only to the high sea surface temperature (SST) over the BKS, but also to the increased frequency, duration, and quasi-stationarity of the Ural blocking (UB) events. Observational analysis reveals that during P2, the UB tends to become quasi stationary and its frequency tends to increase due to the weakening (strengthening) of zonal winds over the Eurasia (North Atlantic) when the surface air temperature (SAT) anomaly over the BKS is positive probably because of the high SST. Strong downward infrared (IR) radiation is seen to occur together with the quasi-stationary and persistent UB because of the accumulation of more water vapor over the BKS. Such downward IR favors the sea ice decline over the BKS, although the high SST over the BKS plays a major role. But for P1, the UB becomes westward traveling due to the opposite distribution of zonal winds relative to P2, resulting in weak downward IR over the BKS. This may lead to a weak decline of the sea ice over the BKS. Thus, it is likely that the rapid decline of the sea ice over the BKS during P2 is attributed to the joint effects of the high SST over the BKS and the quasi-stationary and long-lived UB events.

Key words

Arctic sea ice rapid decline Ural blocking quasi stationary sea surface temperature (SST) 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowldgments

The authors thank the three anonymous reviewers for their helpful comments in improving this paper.

References

  1. Alexeev, V. A., V. V. Ivanov, R. Kwok, et al., 2013: North Atlantic warming and declining volume of Arctic sea ice. The Cryosphere Discuss., 7, 245–265, doi: 10.5194/tcd-7-245-2013.CrossRefGoogle Scholar
  2. Cavalieri, D. J., C. L. Parkinson, P. Gloersen, et al., 1996: Sea Ice Concentrations from Nimbus-7 SMMR and DMSP SSM/I-SSMIS Passive Microwave Data, Version 1 (updated yearly). Boulder, CO, USA. NASA National Snow and Ice Data Center Distributed Active Archive Center. Accessed on 6 November 2017. doi: 10.5067/8GQ8LZQVL0VL.Google Scholar
  3. Chen, X. D., and D. H. Luo, 2017: Arctic sea ice decline and continental cold anomalies: Upstream and downstream effects of Greenland blocking. Geophys. Res. Lett., 44, 3411–3419, doi: 10.1002/2016GL072387.CrossRefGoogle Scholar
  4. Cohen, J., J. A. Screen, J. C. Furtado, et al., 2014: Recent Arctic amplification and extreme mid-latitude weather. Nat. Geosci., 7, 627–637, doi: 10.1038/ngeo2234.CrossRefGoogle Scholar
  5. Comiso, J. C., 2006: Abrupt decline in the Arctic winter sea ice cover. Geophys. Res. Lett., 33, L18504, doi: 10.1029/2006GL027341.CrossRefGoogle Scholar
  6. Comiso, J. C., L. Parkinson, R. Gersten, et al., 2008: Accelerated decline in the Arctic sea ice cover. Geophys. Res. Lett., 35, L01703, doi: 10.1029/2007GL031972.CrossRefGoogle Scholar
  7. Davini, P., C. Cagnazzo, S. Gualdi, et al., 2012: Bidimensional diagnostics, variability, and trends of Northern Hemisphere blocking. J. Climate, 25, 6496–6509, doi: 10.1175/JCLI-D-12-00032.1.CrossRefGoogle Scholar
  8. Diao, Y. N., J. P. Li, and D. H. Luo, 2006: A new blocking index and its application: Blocking action in the Northern Hemisphere. J. Climate, 19, 4819–4839, doi: 10.1175/JCLI3886.1.CrossRefGoogle Scholar
  9. Enfield, D. B., A. M. Mestas-Nuñez, and P. J. Trimble, 2001: The Atlantic Multidecadal Oscillation and its relation to rainfall and river flows in the continental U.S. Geophys. Res. Lett., 28, 2077–2080, doi: 10.1029/2000GL012745.CrossRefGoogle Scholar
  10. Fang, Z. F., and J. M. Wallace, 1994: Arctic sea ice variability on a timescale of weeks and its relation to atmospheric forcing. J. Climate, 7, 1897–1914, doi: 10.1175/1520-0442(1994)007.CrossRefGoogle Scholar
  11. Francis, J. A., and E. Hunter, 2007: Drivers of declining sea ice in the Arctic winter: A tale of two seas. Geophys. Res. Lett., 34, L17503, doi: 10.1029/2007GL030995.CrossRefGoogle Scholar
  12. Francis, J. A., and S. J. Vavrus, 2012: Evidence linking Arctic amplification to extreme weather in mid-latitudes. Geophys. Res. Lett., 39, L06801, doi: 10.1029/2012GL051000.CrossRefGoogle Scholar
  13. Gao, Y. Q., J. Q. Sun, F. Li, et al., 2015: Arctic sea ice and Eurasian climate: A review. Adv. Atmos. Sci., 32, 92–114, doi: 10.1007/s00376-014-0009-6.CrossRefGoogle Scholar
  14. Gong, T. T., and D. H. Luo, 2017: Ural Blocking as an amplifier of the Arctic sea ice decline in winter. J. Climate, 30, 2639–2654, doi: 10.1175/JCLI-D-16-0548.1.CrossRefGoogle Scholar
  15. Kalnay, E., M. Kanamitsu, R. Kistler, et al., 1996: The NCEP/ NCAR 40-year reanalysis project. Bull. Amer. Meteor. Soc., 77, 437–471, doi: 10.1175/1520-0477(1996)077.CrossRefGoogle Scholar
  16. Luo, B. H., D. H. Luo, L. X. Wu, et al., 2017: Atmospheric circulation patterns which promote winter Arctic sea ice decline. Environ. Res. Lett., 12, 054017, doi: 10.1088/1748-9326/aa69d0.CrossRefGoogle Scholar
  17. Luo, D. H., 2005: A barotropic envelope Rossby soliton model for block–eddy interaction. Part I: Effect of topography. J. Atmos. Sci., 62, 5–21, doi: 10.1175/1186.1.Google Scholar
  18. Luo, D. H., and T. T. Gong, 2006: A possible mechanism for the eastward shift of interannual NAO action centers in last three decades. Geophy. Res. Lett., 33, L24815, doi: 10.1029/2006GL027860.CrossRefGoogle Scholar
  19. Luo, D. H., A. R. Lupo, and H. Wan, 2007: Dynamics of eddydriven low-frequency dipole modes. Part I: A simple model of North Atlantic Oscillations. J. Atmos. Sci., 64, 3–28, doi: 10.1175/JAS3818.1.Google Scholar
  20. Luo, D. H., Y. N. Diao, and S. B. Feldstein, 2011: The variability of the Atlantic storm track and the North Atlantic Oscillation: A link between intraseasonal and interannual variability. J. Atmos. Sci., 68, 577–601, doi: 10.1175/2010JAS3579.1.CrossRefGoogle Scholar
  21. Luo, D. H., J. Cha, L. H. Zhong, et al., 2014: A nonlinear multiscale interaction model for atmospheric blocking: The eddy–blocking matching mechanism. Quart. J. Roy. Meteor. Soc., 140, 1785–1808, doi: 10.1002/qj.2337.CrossRefGoogle Scholar
  22. Luo, D. H., Y. Q. Xiao, Y. Yao, et al., 2016a: Impact of Ural blocking on winter warm Arctic–cold Eurasian anomalies. Part I: Blocking-induced amplification. J. Climate, 29, 3925–3947, doi: 10.1175/JCLI-D-15-0611.1.Google Scholar
  23. Luo, D. H., Y. Q. Xiao, Y. N. Diao, et al., 2016b: Impact of Ural blocking on winter warm Arctic–cold Eurasian anomalies. Part II: The link to the North Atlantic Oscillation. J. Climate, 29, 3949–3971, doi: 10.1175/JCLI-D-15-0612.1.Google Scholar
  24. Miles, M. W., D. V. Divine, T. Furevik, et al., 2014: A signal of persistent Atlantic multidecadal variability in Arctic sea ice. Geophys. Res. Lett., 41, 463–469, doi: 10.1002/2013GL058084.CrossRefGoogle Scholar
  25. Park, D.-S., S. Lee, and S. B. Feldstein, 2015: Attribution of the recent winter sea ice decline over the Atlantic sector of the Arctic Ocean. J. Climate, 28, 4027–4033, doi: 10.1175/JCLID-15-0042.1.CrossRefGoogle Scholar
  26. Peings, Y., and G. Magnusdottir, 2014: Forcing of the wintertime atmospheric circulation by the multidecadal fluctuations of the North Atlantic Ocean. Environ. Res. Lett., 9, 034018, doi: 10.1088/1748-9326/9/3/034018.CrossRefGoogle Scholar
  27. Rayner, N. A., D. E. Parker, E. B. Horton, et al., 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, doi: 10.1029/2002JD002670.CrossRefGoogle Scholar
  28. Screen, J. A., and I. Simmonds, 2014: Amplified mid-latitude planetary waves favour particular regional weather extremes. Nature Climate Change, 4, 704–709, doi: 10.1038/nclimate2271.CrossRefGoogle Scholar
  29. Sorteberg, A., and B. Kvingedal, 2006: Atmospheric forcing on the Barents Sea winter ice extent. J. Climate, 19, 4772–4784, doi: 10.1175/JCLI3885.1.CrossRefGoogle Scholar
  30. Spielhagen, R. F., K. Werner, S. A. Sørensen, et al., 2011: Enhanced modern heat transfer to the Arctic by warm Atlantic water. Science, 331, 450–453, doi: 10.1126/science.1197397.CrossRefGoogle Scholar
  31. Stramler, K., A. D. Del Genio, and W. B. Rossow, 2011: Synoptically driven Arctic winter states. J. Climate, 24, 1747–1762, doi: 10.1175/2010JCLI3817.1.CrossRefGoogle Scholar
  32. Tibaldi, S., and F. Molteni, 1990: On the operational predictability of blocking. Tellus, 42A, 343–365, doi: 10.3402/tellusa.v42i3.11882.CrossRefGoogle Scholar
  33. Wu, B. Y., R. H. Huang, and D. Y. Gao, 2002: Numerical simulations on influences of variation of sea ice thickness and extent on atmospheric circulation. J. Meteor. Res., 16, 150–164.Google Scholar
  34. Zhang, L., and T. Li, 2017: Physical processes responsible for the interannual variability of sea ice concentration in Arctic in boreal autumn since 1979. J. Meteor. Res., 31, 468–475, doi: 10.1007/s13351-017-6105-7.CrossRefGoogle Scholar

Copyright information

© The Chinese Meteorological Society and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Physical Oceanography Laboratory, Qingdao Collaborative Innovation Center of Marine Science and Technology, College of Oceanic and Atmospheric SciencesOcean University of ChinaQingdaoChina
  2. 2.Key Laboratory of Regional Climate–Environment for Temperate East AsiaInstitute of Atmospheric Physics, Chinese Academy of SciencesBeijingChina

Personalised recommendations