Advertisement

Journal of Meteorological Research

, Volume 32, Issue 3, pp 367–379 | Cite as

Influences of the 11-yr Sunspot Cycle and Polar Vortex Oscillation on Observed Winter Temperature Variations in China

  • Chunhui Lu
  • Botao Zhou
Regular Articles
  • 82 Downloads

Abstract

Using the NCEP-2 reanalysis data in 1979–2015, we analyze variations in the coupled stratosphere–troposphere system and attribute them to the polar vortex oscillation (PVO) and the 11-yr sunspot cycle (SC). Subsequently, influences of PVO and SC on the near-ground temperature and extreme temperatures are diagnosed based on observations at 2419 surface stations in China over the same period. Empirical Orthogonal Function (EOF) analysis of geopotential height (GH) anomalies indicates that the first and second EOF modes together can explain nearly 50% of the total variance and they have different driving sources, active periods, and regions. The first EOF mode mainly represents variation characteristics of the polar vortex, and its active periods appear in late winter. It is found that a weakened polar vortex (larger amplitude in the positive time series of the first mode) corresponds to lower daily mean, minimum, and maximum temperatures and more frequent cold nights and days. This cooling effect mainly occur in northeastern China. The second EOF mode is closely related to the SC, and its major active periods are late autumn and early winter. The results reveal that strong solar activity (larger amplitude in the positive time series of the second mode) leads to cooling effects in northern China through accelerating seasonal transformation of the stratospheric circulation and enhancing intensity of the subtropical westerly jet in the upper troposphere and lower stratosphere. The near-ground temperature is lower than usual, especially for daily mean and minimum temperatures. The number of warm nights and days is significantly reduced, and cold nights and days become more frequent. Therefore, the first and second EOF mode time series of GH anomalies can be used as indices of PVO and solar activity, respectively; and can provide indications of winter cooling processes in China.

Key words

11-yr sunspot cycle polar vortex oscillation extreme temperature indices cooling process 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

The authors are grateful to the anonymous reviewers for constructive comments and to the Editor for helpful assistance. The meteorological analysis data used in this study were kindly provided by the NCAR/NCEP of USA and the NMIC of China.

References

  1. Alexander L. V., X. B. Zhang, T. C. Peterson, et al., 2006: Global observed changes in daily climate extremes of temperature and precipitation. J. Geophys. Res., 111, D05109, doi: 10.1029/2005JD006290.Google Scholar
  2. Andrews D. G., J. R. Holton, and C. B. Leovy, 1987: Middle Atmosphere Dynamics. Academic Press, San Diego, 489 pp.Google Scholar
  3. Baldwin M. P., and T. J. Dunkerton, 1999: Propagation of the Arctic Oscillation from the stratosphere to the troposphere. J. Geophys. Res., 104, 30,937–30,946, doi: 10.1029/1999JD900445.CrossRefGoogle Scholar
  4. Baldwin M. P., D. B. Stephenson, D. W. J. Thompson, et al., 2003: Stratospheric memory and skill of extended-range weather forecasts. Science, 301, 636–640, doi: 10.1126/science.1087143.CrossRefGoogle Scholar
  5. Brown S. J., J. Caesar, and C. A. T. Ferro, 2008: Global changes in extreme daily temperature since 1950. J. Geophys. Res., 113, D05115, doi: 10.1029/2006JD008091.CrossRefGoogle Scholar
  6. Caesar J., L. Alexander, and R. Vose, 2006: Large-scale changes in observed daily maximum and minimum temperatures: Creation and analysis of a new gridded data set. J. Geophys. Res., 111, D05101, doi: 10.1029/2005JD006280.CrossRefGoogle Scholar
  7. Cai M., and R.-C. Ren, 2007: Meridional and downward propagation of atmospheric circulation anomalies. Part I: Northern Hemisphere cold season variability. J. Atmos. Sci., 64, 1880–1901, doi: 10.1175/JAS3922.1.CrossRefGoogle Scholar
  8. Cao L. J., Y. N. Zhu, G. L. Tang, et al., 2016: Climatic warming in China according to a homogenized data set from 2419 stations. Int. J. Climatol., 36, 4384–4392, doi: 10.1002/joc.4639.CrossRefGoogle Scholar
  9. Chandra S., and R. D. McPeters, 1994: The solar cycle variation of ozone in the stratosphere inferred from Nimbus 7 and NOAA 11 satellites. J. Geophys. Res., 99, 20,665–20,671, doi: 10.1029/94JD02010.CrossRefGoogle Scholar
  10. Chen W., and Q. Zhou, 2012: Modulation of the Arctic Oscillation and the East Asian winter climate relationships by the 11-yr solar cycle. Adv. Atmos. Sci., 29, 217–226, doi: 10. 1007/s00376-011-1095-3.CrossRefGoogle Scholar
  11. Chen W., X. Q. Lan, L. Wang, et al., 2013: The combined effects of the ENSO and Arctic Oscillation on the winter climate anomalies in East Asia. Chinese Sci. Bull., 58, 1355–1362, doi: 10.1007/s11434-012-5654-5.CrossRefGoogle Scholar
  12. Donat M. G., and L. V. Alexander, 2012: The shifting probability distribution of global daytime and night-time temperatures. Geophys. Res. Lett., 39, L14707, doi: 10.1029/2012GL052459.CrossRefGoogle Scholar
  13. Donat M. G., J. Sillmann, S. Wild, et al., 2014: Consistency of temperature and precipitation extremes across various global gridded in situ and reanalysis datasets. J. Climate, 27, 5019–5035, doi: 10.1175/JCLI-D-13-00405.1.CrossRefGoogle Scholar
  14. Gray L. J., J. Beer, M. Geller, et al., 2010: Solar influences on climate. Rev. Geophys., 48, RG4001, doi: 10.1029/2009RG000282.CrossRefGoogle Scholar
  15. Hartmann, D. L., A. M. G. Klein Tank, M. Rusticucci, et al., 2013: Observations: Atmosphere and surface. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. T. Stocker, D. Qin, G. Plattner, et al., Eds., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 159–254, doi: 10.1017/CBO9781107415324.008.Google Scholar
  16. Ineson S., A. A. Scaife, J. R. Knight, et al., 2011: Solar forcing of winter climate variability in the Northern Hemisphere. Nat. Geosci., 4, 753–757, doi: 10.1038/ngeo1282.CrossRefGoogle Scholar
  17. Jiang Q., X. K. Ma, and F. Wang, 2016: Analysis of the January 2016 atmospheric circulation and weather. Meteor. Mon., 42, 514–520, doi: 10.7519/j.issn.1000-0526.2016.04.016. (in Chinese)Google Scholar
  18. Kanamitsu M., W. Ebisuzaki, J. Woollen, et al., 2002: NCEP–DOE AMIP-II reanalysis (R-2). Bull. Amer. Meteor. Soc., 83, 1631–1643, doi: 10.1175/BAMS-83-11-1631.CrossRefGoogle Scholar
  19. Kodera, K, 2002: Solar cycle modulation of the North Atlantic Oscillation: Implication in the spatial structure of the NAO. Geophys. Res. Lett., 29, 1218, doi: 10.1029/2001GL014557.CrossRefGoogle Scholar
  20. Kodera K., 2003: Solar influence on the spatial structure of the NAO during the winter 1900–1999. Geophys. Res. Lett., 30, 1175, doi: 10.1029/2002GL016584.Google Scholar
  21. Kodera K., and Y. Kuroda, 2002: Dynamical response to the solar cycle. J. Geophys. Res., 107, 4749, doi: 10.1029/2002JD002224.CrossRefGoogle Scholar
  22. Kodera K., R. Thiéblemont, S. Yukimoto, et al., 2016: How can we understand the global distribution of the solar cycle signal on the Earth’s surface? Atmos. Chem. Phys., 16, 12,925–12,944, doi: 10.5194/acp-16-12925-2016.CrossRefGoogle Scholar
  23. Labitzke K., 1987: Sunspots, the QBO, and the stratospheric temperature in the North Polar Region. Geophys. Res. Lett., 14, 535–537, doi: 10.1029/GL014i005p00535.CrossRefGoogle Scholar
  24. Labitzke K., 2001: The global signal of the 11-year sunspot cycle in the stratosphere: Differences between solar maxima and minima. Meteor. Z., 10, 83–90, doi: 10.1127/0941-2948/2001/0010-0083.CrossRefGoogle Scholar
  25. Labitzke K., 2003: The global signal of the 11-year sunspot cycle in the atmosphere: When do we need the QBO. Meteor. Z., 12, 209–216, doi: 10.1127/0941-2948/2003/0012-0211.CrossRefGoogle Scholar
  26. Labitzke K., 2005: On the solar cycle–QBO relationship: A summary. J. Atmos. Sol.-Terr. Phys., 67, 45–54, doi: 10.1016/j.jastp.2004.07.016.CrossRefGoogle Scholar
  27. Li F., H. J. Wang, and Y. Q. Gao, 2014: On the strengthened relationship between the East Asian winter monsoon and Arctic Oscillation: A comparison of 1950–70 and 1983–2012. J. Climate, 27, 5075–5091, doi: 10.1175/JCLI-D-13-00335.1.CrossRefGoogle Scholar
  28. Liang, X.-Z., and W.-C. Wang, 1998: Associations between China monsoon rainfall and tropospheric jets. Quart. J. Roy. Meteor. Soc., 124, 2597–2623, doi: 10.1002/qj.49712455204.CrossRefGoogle Scholar
  29. Liu Y., and C. H. Lu, 2010: The influence of the 11-year sunspot cycle on the atmospheric circulation during winter. Chinese J. Geophys., 53, 1269–1277, doi: 10.3969/j.issn.0001-5733.2010.06.004. (in Chinese)Google Scholar
  30. Lu C. H., and Y. H. Ding, 2015: Analysis of isentropic potential vorticities for the relationship between stratospheric anomalies and the cooling process in China. Sci. Bull., 60, 726–738, doi: 10.1007/s11434-015-0757-4.CrossRefGoogle Scholar
  31. Lu C. H., B. T. Zhou, and Y. H. Ding, 2016: Decadal variation of the Northern Hemisphere annular mode and its influence on the East Asian trough. J. Meteor. Res., 30, 584–597, doi: 10.1007/s13351-016-5105-3.CrossRefGoogle Scholar
  32. Lu H., L. J. Gray, and I. P. White, 2017: Stratospheric response to the 11-yr solar cycle: Breaking planetary waves, internal reflection, and resonance. J. Climate, 30, 7169–7190, doi: 10.1175/JCLI-D-17-0023.1.CrossRefGoogle Scholar
  33. Mao R., D. Y. Gong, and Q. M. Fang, 2007: Influences of the East Asian jet stream on winter climate in China. J. Appl. Meteor. Sci., 18, 137–146. (in Chinese)Google Scholar
  34. Matthes K., B. Funke, M. E. Andersson, et al., 2017: Solar forcing for CMIP6 (v3.2). Geosci. Model Devel., 10, 2247–2302, doi: 10.5194/gmd-10-2247-2017.CrossRefGoogle Scholar
  35. Park, H.-J., and J.-B. Ahn, 2016: Combined effect of the Arctic Oscillation and the western Pacific pattern on East Asia winter temperature. Climate Dyn., 46, 3205–3221, doi: 10.1007/s00382-015-2763-2.CrossRefGoogle Scholar
  36. Park, T.-W., C.-H. Ho, and S. Yang, 2011: Relationship between the Arctic Oscillation and cold surges over East Asia. J. Climate, 24, 68–83, doi: 10.1175/2010JCLI3529.1.CrossRefGoogle Scholar
  37. Shindell D., D. Rind, N. Balachandran, et al., 2009: Solar cycle variability, ozone, and climate. Science, 284, 305–308, doi: 10.1126/science.284.5412.305.CrossRefGoogle Scholar
  38. Sillmann J., V. V. Kharin, F. W. Zwiers, et al., 2013a: Climate extremes indices in the CMIP5 multimodel ensemble: Part 2. Future climate projections. J. Geophys. Res., 118, 2473–2493, doi: 10.1002/jgrd.50188.Google Scholar
  39. Sillmann J., V. V. Kharin, X. Zhang, et al., 2013b: Climate extremes indices in the CMIP5 multimodel ensemble: Part 1. Model evaluation in the present climate. J. Geophys. Res., 118, 1716–1733, doi: 10.1002/jgrd.50203.Google Scholar
  40. Sun Y., T. Hu, X. B. Zhang, et al., 2018: Anthropogenic influence on the eastern China 2016 super cold surge. Bull. Amer. Meteor. Soc., 99, S123–S127, doi: 10.1175/BAMS-D-17-0092.1.CrossRefGoogle Scholar
  41. Thompson D. W. J., and J. M. Wallace, 1998: The Arctic Oscillation signature in the wintertime geopotential height and temperature fields. Geophys. Res. Lett., 25, 1297–1300, doi: 10.1029/98GL00950.CrossRefGoogle Scholar
  42. Wang R. L., Z. N. Xiao, K. Y. Zhu, et al., 2015: Asymmetric impact of solar activity on the East Asian winter climate and its possible mechanism. Chinese J. Atmos. Sci., 39, 815–826, doi: 10.3878/j.issn.1006-9895.1410.14211. (in Chinese)Google Scholar
  43. Wu J., and X. J. Gao, 2013: A gridded daily observation dataset over China and comparison with the other datasets. Chinese J. Geophys., 56, 1102–1111, doi: 10.6038/cjg20130406. (in Chinese)Google Scholar
  44. Xiao, Z.-N., D.-L. Li, L.-M. Zhou, et al., 2017: Interdisciplinary studies of solar activity and climate change. Atmos. Ocean. Sci. Lett., 104, 325–328, doi: 10.1080/16742834.2017.1321951.CrossRefGoogle Scholar
  45. Yin S., J. Feng, and J. P. Li, 2013: Influences of the preceding winter Northern Hemisphere annular mode on the spring extreme low temperature events in the north of eastern China. Acta Meteor. Sinica, 71, 96–108, doi: 10.11676/qxxb2013.008. (in Chinese)Google Scholar
  46. Zhang X. B., L. Alexander, G. C. Hegerl, et al., 2011: Indices for monitoring changes in extremes based on daily temperature and precipitation data. Wiley Interdisciplinary Reviews: Climate Change, 2, 851–870, doi: 10.1002/wcc.147.Google Scholar
  47. Zhao L., J. S. Wang, H. W. Liu, et al., 2017: Amplification of the solar signal in the summer monsoon rainband in China by synergistic actions of different dynamical responses. J. Meteor. Res., 31, 61–72, doi: 10.1007/s13351-016-6046-6.CrossRefGoogle Scholar
  48. Zhou B. Z., L. H. Gu, Y. H. Ding, et al., 2011: The great 2008 Chinese ice storm: Its socioeconomic–ecological impact and sustainability lessons learned. Bull. Amer. Meteor. Soc., 92, 47–60, doi: 10.1175/2010BAMS2857.1.CrossRefGoogle Scholar

Copyright information

© The Chinese Meteorological Society and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Laboratory for Climate Studies, National Climate CenterChina Meteorological AdministrationBeijingChina
  2. 2.Collaborative Innovation Center on Forecast and Evaluation of Meteorological DisastersNanjing University of Information Science & TechnologyNanjingChina

Personalised recommendations