Journal of Meteorological Research

, Volume 32, Issue 2, pp 181–190 | Cite as

Quasi-3-yr Cycle of Rainy Season Precipitation in Tibet Related to Different Types of ENSO during 1981–2015

  • Chunxue Wang
  • Zhenfeng Ma
Regular Articles


The rainy season precipitation in Tibet (RSPT) is a direct cause for local floods/droughts. It also indirectly affects the thermal conditions of the Tibetan Plateau, which can result in anomalous patterns of atmospheric circulation over East Asia. The interannual variability of the RSPT is often linked with the El Niño–Southern Oscillation (ENSO), but the relevant mechanisms are far from being understood, particularly for different types of ENSO events. We investigated the interannual variation of the RSPT in association with different types of ENSO. A quasi-3-yr period of the RSPT (less–more–more precipitation) was significant at the 95% confidence level. A joint multi-taper method with singular value decomposition analysis of the coupled field between the RSPT and the sea surface temperature (SST) revealed that the developing eastern Pacific type El Niño was accompanied by a decrease in the RSPT. The shift from the central Pacific type El Niño to the eastern Pacific La Niña was accompanied by an increase in the RSPT. Weakening of the central Pacific La Niña was accompanied by an increase in the RSPT. Analysis of the mechanism of this coupling, using the same analysis method but other climatic factors, indicated that the gradually strengthening eastern Pacific El Niño can inhibit the Walker circulation, weakening the South Asian summer monsoon, and resulting in transport of less water vapor from the Bay of Bengal to Tibet. The change from the central Pacific El Niño to the eastern Pacific La Niña led to continued strengthening of the Walker circulation with westward movement of the ascending area. This enhanced the South Asian summer monsoon over the Arabian Sea and transported more water vapor to Tibet. The decreasing central Pacific La Niña accompanied by persistent cooling of SSTs in the equatorial Pacific led to a strong eastern North Pacific summer monsoon, causing an anomaly in the easterly transport of water vapor from the Sea of Japan to Tibet and increased RSPT.

Key words

Tibet multi-taper method with singular value decomposition El Niño–Southern Oscillation period 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Apipattanavis, S., G. J. McCabe, B. Rajagopalan, et al., 2009: Joint spatiotemporal variability of global sea surface temperatures and global Palmer drought severity index values. J. Climate, 22, 6251–6267, doi: 10.1175/2009JCLI2791.1.CrossRefGoogle Scholar
  2. Benton, G. S., R. T. Blackburn, and V. O. Snead, 1950: The role of the atmosphere in the hydrologic cycle. Eos, Trans. Amer. Geophys. Union, 31, 61–73, doi: 10.1029/TR031i001p00061.CrossRefGoogle Scholar
  3. Ding, Y. H., 1994: The summer monsoon in East Asia. Monsoons over China. Ding, Y. H. Ed., Kluwer Academic, Boston, 1–9, doi: 10.1007/978-94-015-8302-2_1.Google Scholar
  4. Du, J., and Y. C. Ma, 2004: Climatic trend of rainfall over Tibetan Plateau from 1971 to 2000. Acta Geographica Sinica, 59, 375–382, doi: 10.11821/xb200403007. (in Chinese)Google Scholar
  5. Fu, C. B., and J. Fletcher, 1985: Two types of warming at the equator during El Niño. Chin. Sci. Bull., 8, 596–599, doi: 10.1360/csb1985-30-8-596. (in Chinese)Google Scholar
  6. Han, X., F. Y. Wei, Y. M. Tourre, et al., 2008: Spatio-temporal variability of Northern Hemispheric sea level pressure (SLP) and precipitation over the mid-to-low reaches of the Yangtze River. Adv. Atmos. Sci., 25, 458–466, doi: 10.1007/s00376-008-0458-x.CrossRefGoogle Scholar
  7. Huang, X. Q., C. R. Luobu, Y. Yang, et al., 2013: Temporal and spatial variation of precipitation events frequency and intensity in rainy season during 1961–2007 in Tibet, China. J. Desert Res., 33, 902–910, doi: 10.7522/j.issn.1000-694X.1013.00088. (in Chinese)Google Scholar
  8. Jin, Z. H., and S. Y. Tao, 1999: A study on the relationships between ENSO cycle and rainfalls during summer and winter in eastern China. Chinese J. Atmos. Sci., 23, 663–672, doi: 10.3878/j.issn.1006-9895.1999.06.03. (in Chinese)Google Scholar
  9. Krishnamurti, T. N., and H. N. Bhalme, 1976: Oscillations of a monsoon system. Part I: Observational aspects. J. Atmos. Sci., 33, 1937–1954, doi: 10.1175/1520-0469(1976)033.Google Scholar
  10. Kug, J. S., F. F. Jin, and S. I. An, 2009: Two types of El Niño events: Cold tongue El Niño and warm pool El Niño. J. Climate, 22, 1499–1515, doi: 10.1175/2008JCLI2624.1.CrossRefGoogle Scholar
  11. Li, X. Z., and W. Zhou, 2012: Quasi-4-yr coupling between El Niño–Southern Oscillation and water vapor transport over East Asia–WNP. J. Climate, 25, 5879–5891, doi: 10.1175/JCLI-D-11-00433.1.CrossRefGoogle Scholar
  12. Li, X. Z., W. Zhou, D. L. Chen, et al., 2014: Water vapor transport and moisture budget over eastern China: Remote forcing from the two types of El Niño. J. Climate, 27, 8778–8792, doi: 10.1175/JCLI-D-14-00049.1.CrossRefGoogle Scholar
  13. Liu, X. D., and Z.-Y. Yin, 2001: Spatial and temporal variation of summer precipitation over the eastern Tibetan Plateau and the North Atlantic oscillation. J. Climate, 14, 2896–2909, doi: 10.1175/1520-0442(2001)014.CrossRefGoogle Scholar
  14. Lu, H. L., Q. Q. Shao, J. Y. Liu, et al., 2008: Cluster analysis on summer precipitation field over Qinghai–Tibetan Plateau from 1961 to 2004. J. Geogr. Sci., 18, 295–307, doi: 10.1007/s11442-008-0295-y.CrossRefGoogle Scholar
  15. Lu, R. Y., and R. H. Huang, 1998: Influence of East Asia/Pacific teleconnection pattern on the interannual variations of the blocking highs over the northeastern Asia in summer. Scientia Atmospherica Sinica, 22, 727–734, doi: 10.3878/j.issn.1006-9895.1998.05.07. (in Chinese)Google Scholar
  16. Mann, M. E., and J. Park, 1994: Global-scale modes of surface temperature variability on interannual to century timescales. J. Geophys. Res., 99, 25819–25833, doi: 10.1029/94JD02396.CrossRefGoogle Scholar
  17. Mann, M. E., and J. Park, 1996: Joint spatiotemporal modes of surface temperature and sea level pressure variability in the Northern Hemisphere during the last century. J. Climate, 9, 2137–2162, doi: 10.1175/1520-0442(1996)009.CrossRefGoogle Scholar
  18. Mann, M. E., and J. Park, 1999: Oscillatory spatiotemporal signal detection in climate studies: A multiple-taper spectral domain approach. Adv. Geophys., 41, 1–131, doi: 10.1016/S0065-2687(08)60026-6.CrossRefGoogle Scholar
  19. Minobe, S., 2000: Spatio-temporal structure of the pentadecadal variability over the North Pacific. Prog. Oceanogr., 47, 381–408, doi: 10.1016/S0079-6611(00)00042-2.CrossRefGoogle Scholar
  20. Murakami, T., and J. Matsumoto, 1994: Summer monsoon over the Asian continent and western North Pacific. J. Meteor. Soc. Japan, 72, 719–745, doi: 10.2151/jmsj1965.72.5_719.CrossRefGoogle Scholar
  21. Paek, H. J., J. Y. Yu, J. W. Hwu, et al., 2015: A source of AGCM bias in simulating the western Pacific subtropical high: Different sensitivities to the two types of ENSO. Mon. Wea. Rev., 143, 2348–2362, doi: 10.1175/MWR-D-14-00401.1.CrossRefGoogle Scholar
  22. Pubu, Z. M., S. W. Zhou, and Y. H. Fu, 2002: Reflection from the ENSO event on precipitation during the summer of Tibet. Tibet’s Science & Technology, 2, 41–47, doi: 10.3969/j.issn.1004-3403.2002.02.017. (in Chinese)Google Scholar
  23. Simmonds, I., D. H. Bi, and P. Hope, 1999: Atmospheric water vapor flux and its association with rainfall over China in summer. J. Climate, 12, 1353–1367, doi: 10.1175/1520-0442(1999)012.CrossRefGoogle Scholar
  24. Small, D., and S. Islam, 2008: Low frequency variability in fall precipitation across the United States. Water Resour. Res., 44, W04426, doi: 10.1029/2006WR005623.CrossRefGoogle Scholar
  25. Tao, S.-Y., and Y.-H. Ding, 1981: Observational evidence of the influence of the Qinghai–Xizang (Tibet) Plateau on the occurrence of heavy rain and severe convective storms in China. Bull. Amer. Meteor. Soc., 62, 23–30, doi: 10.1175/1520-0477(1981)062.CrossRefGoogle Scholar
  26. Tao, S. Y., and L. X. Chen, 1987: A review of recent research on the East Asian summer monsoon in China. Monsoon Meteorology. C. P. Chang and T. N. Krishnamurti, Eds., Oxford University Press, Oxford, pp. 60–92.Google Scholar
  27. Wang, B., and Z. Fan, 1999: Choice of South Asian summer monsoon indices. Bull. Amer. Meteor. Soc., 80, 629–638, doi: 10.1175/1520-0477(1999)080.CrossRefGoogle Scholar
  28. Wang, B., R. Wu, and K.-M. Lau, 2001: Interannual variability of Asian summer monsoon: Contrast between the Indian and western North Pacific–East Asian monsoons. J. Climate, 14, 4073–4090, doi:,4073:IVOTAS.2.0.CO;2.CrossRefGoogle Scholar
  29. Webster, P. J., and S. Yang, 1992: Monsoon and ENSO: Selectively interactive systems. Quart. J. Roy. Meteor. Soc., 118, 877–926, doi: 10.1002/qj.49711850705.CrossRefGoogle Scholar
  30. Wei, W., R. H. Zhang, M. Wen, et al., 2015: Interannual variation of the South Asian high and its relation with Indian and East Asian summer monsoon rainfall. J. Climate, 28, 2623–2634, doi: 10.1175/JCLI-D-14-00454.1.CrossRefGoogle Scholar
  31. Wu, G. X., and Y. M. Liu, 2016: Impacts of the Tibetan Plateau on Asian climate. Meteor. Monogr., 56, 7.1–7.29, doi: 10.1175/AMSMONOGRAPHS-D-15-0018.1.CrossRefGoogle Scholar
  32. Yanai, M., C. F. Li, and Z. S. Song, 1992: Seasonal heating of the Tibetan Plateau and its effects on the evolution of the Asian summer monsoon. J. Meteor. Soc. Japan, 70, 319–351, doi: 10.2151/jmsj1965.70.1B_319.CrossRefGoogle Scholar
  33. Ye, D. Z., 1981: Some characteristics of the summer circulation over the Qinghai–Xizang (Tibet) Plateau and its neighborhood. Bull. Amer. Meteor. Soc., 62, 14–19, doi: 10.1175/1520-0477(1981)062.CrossRefGoogle Scholar
  34. Yeh, S. W., J. S. Kug, B. Dewitte, et al., 2009: El Niño in a changing climate. Nature, 461, 511–514, doi: 10.1038/nature08316.CrossRefGoogle Scholar
  35. Yuan, Y., and S. Yang, 2012: Impacts of different types of El Niño on the East Asian climate: Focus on ENSO cycles. J. Climate, 25, 7702–7722, doi: 10.1175/JCLI-D-11-00576.1.CrossRefGoogle Scholar
  36. Zang, H. F., and S. W. Wang, 1984: Equatorial eastern Pacific SST and subtropical high. Acta Oceanol. Sinica, 3, 471–476.Google Scholar
  37. Zhang, Q., G. X. Wu, and Y. F. Qian, 2002: The bimodality of the 100-hPa South Asian high and its relationship to the climate anomaly over East Asia in summer. J. Meteor. Soc. Japan, 80, 733–744, doi: 10.2151/jmsj.80.733.CrossRefGoogle Scholar
  38. Zheng, Q. L., and K.-N. Liou, 1986: Dynamic and thermodynamic influences of the Tibetan Plateau on the atmosphere in a general circulation model. J. Atmos. Sci., 43, 1340–1355, doi: 10.1175/1520-0469(1986)043.CrossRefGoogle Scholar
  39. Zhou, S. W., Z. M. Pubu, and L. Jia, 2000: Analysis of rainfall patterns during rainy season over the Tibetan Plateau. Meteor. Mon., 26, 39–43, doi: 10.3969/j.issn.1000-0526.2000.05.010. (in Chinese)Google Scholar

Copyright information

© The Chinese Meteorological Society and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Climate Center of Sichuan ProvinceChengduChina
  2. 2.Key Laboratory of Sichuan Province for Heavy Rain and Drought–Flood Disasters in Plateau and BasinChengduChina

Personalised recommendations